
Frugal: Efficient and Economic Embedding Model
Training with Commodity GPUs

Minhui Xie
Tsinghua University

Beijing, China
Renmin University of China

Beijing, China
xieminhui@ruc.edu.cn

Shaoxun Zeng
Tsinghua University

Beijing, China
zsx21@mails.tsinghua.edu.cn

Hao Guo
Tsinghua University

Beijing, China
gh23@mails.tsinghua.edu.cn

Shiwei Gao
Tsinghua University

Beijing, China
gsw23@mails.tsinghua.edu.cn

Youyou Lu∗
Tsinghua University

Beijing, China
luyouyou@tsinghua.edu.cn

Abstract
Embedding models show superiority in learning represen-
tations of massive ID-type features in sparse learning sce-
narios such as recommendation systems (e.g., user/item IDs)
and graph learning (e.g., node/edge IDs). Commodity GPUs
are highly favored for their cost-efficient computing power,
which is ideally suited for the low computing demand of
memory-intensive embedding models. However, directly
running embedding model training on commodity GPUs
yields poor performance because of their deficient communi-
cation resources (including low communication bandwidth
and no PCIe P2P support).

This paper presents Frugal, an embedding model training
system tailored for commodity GPUs. Based on the observa-
tion that the communication between commodity GPUsmust
be bounced on host memory (due to no PCIe P2P support),
the key idea of Frugal is proactively flushing, where each
GPU proactively flushes its own parameters that other GPUs
will access into host memory, thereby decoupling half of the
communication overhead to non-critical paths. To alleviate
the communication contention of proactively flushing on
foreground training processes, Frugal assigns priorities to
each flush operation, and prioritizes flushing parameters that
GPUs will access while deferring others. Further, Frugal
tailors a two-level priority queue to ensure high scalability
for operations involving priorities. Frugal has been applied
to train embedding models including recommendation mod-
els and graph embedding. Experiments indicate that Frugal

∗Youyou Lu is the corresponding author.

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707245

can significantly increase training throughput on commodity
GPUs, and achieve similar throughput compared to existing
systems on datacenter GPUs with 4.0-4.3× improvement in
cost-effectiveness.

CCS Concepts: • Computer systems organization →
Heterogeneous (hybrid) systems;Neural networks; •Com-
puting methodologies→ Machine learning; • Networks
→ Bus networks.

Keywords: Deep Learning Model Training; Machine Learn-
ing System; Embedding Models; Heterogeneous Computing
ACM Reference Format:
Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, and Youyou Lu.
2025. Frugal: Efficient and Economic Embedding Model Training
with Commodity GPUs. In Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 1 (ASPLOS ’25), March 30-April 3,

2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3669940.3707245

1 Introduction
Embedding models have become pivotal in the field of ma-
chine learning for their ability to effectively learn repre-
sentations of massive ID-type features in sparse learning
scenarios, such as advertising [44], recommendation sys-
tems [16, 19, 20, 48] and graph learning [14, 21, 27, 41–43, 50].
These models handle ID-type features, such as user/item IDs
or graph node/edge IDs, by mapping them to embeddings via
huge embedding tables (𝑂 (100) GB-scale, on host memory).
Different from traditional deep learning models, embedding
models show extreme memory intensity for massive ran-
dom lookups on embedding tables, and existing training sys-
tems [8, 9, 12, 38, 52] maintain multi-GPU embedding cache
by caching hot entries to reduce host memory fetching.

The training of embedding models has always relied heav-
ily on datacenter GPUs (e.g., A100/A30), known for their
extensive computational power and high-speed communi-
cation capabilities (NVLink). However, datacenter GPUs

https://orcid.org/0000-0001-6684-8336
https://orcid.org/0009-0004-6493-1768
https://orcid.org/0009-0002-4819-5786
https://orcid.org/0009-0009-5259-115X
https://orcid.org/0000-0002-6214-5390
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.1145/3669940.3707245
https://doi.org/10.1145/3669940.3707245

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, & Youyou Lu

(a) Datacenter GPUs
Support PCIe P2P

CPU

PCIe bus

GPU0

CPU
host memory

Bounced
buffer

GPU1 GPU2 GPU3

PCIe bus

GPU0 GPU1 GPU2 GPU3

NO PCIe P2P
NV Switch

(b) Commodity GPUs

Figure 1. Comparison of communication mode between
datacenter and commodity GPUs.

are often prohibitively expensive, making them less acces-
sible to medium-sized enterprises, research labs, and in-
dividual researchers. In contrast, commodity GPUs (e.g.,
RTX 4090/3090) are recently more favored [18, 29, 37, 39] for
their high accessibility, adequate and higher cost-effective
computing power. For instance, the cost-performance ratio
of RTX 4090 is 5.4× that of A100.

Ideally, commodity GPUs are well-suited for the low com-
puting demand of embedding model training due to their
memory intensity. However, directly running existing train-
ing system [12] on commodity GPUs leads to a 46% reduction
in throughput (§2.4). Our analysis reveals that the chief cul-
prit is their limited communication resources due to the
lack of hardware support for PCIe peer-to-peer (PCIe P2P)
communication, which is prone to CPU involvement and
additional data bounced on host memory (Figure 1). This
causes low bandwidth of GPU collective communication
(46% ↓) and CPU-involved software overhead (up to 1.9× ↑),
which obstructs training efficiency.

This paper presents Frugal, a communication-efficient
training system designed to unlock commodity GPUs’ full
potential for embedding model training. Based on the ob-
servation that communication between commodity GPUs is
subject to be bounced on host memory due to the absence
of PCIe P2P support, the key idea of Frugal is proactively
flushing mechanism. Specifically, unlike existing systems
where all GPUs passively wait for queries from other GPUs
and all communication is on the critical path of training,
each GPU in Frugal proactively flushes its own parameters,
which other GPUs will access, into host memory. Thus, this
mitigates half of the communication overhead from the criti-
cal path and eliminates GPU collective communication, so
as to alleviate communication overhead. Further, given the
latest parameters have been flushed into host memory, GPUs
can directly retrieve parameters (missed in the local GPU
cache) from host memory, without the coordination of CPU,
thereby reducing CPU software overhead.
Based on this key idea, we propose priority-based proac-

tively flushing algorithm (§3.3), 𝑃2𝐹 algorithm for short. It
assigns a priority to each flush operation and prioritizes those

that are about to be accessed while selectively deferring oth-
ers. Specifically, priority is defined as the next-to-be accessed
step number by anticipating future access of the correspond-
ing parameters. Frugal records metadata (referred to as g-
entry) for each parameter update, and maintains all g-entries
in a global priority queue (PQ). Frugal also runs multiple
background threads to continuously dequeue g-entries from
this PQ and flush the corresponding embedding updates into
host memory.
Since proactively flushing runs asynchronously in the

background, to prevent GPUs from reading outdated embed-
dings on host memory (i.e., ensuring consistency1), 𝑃2𝐹

algorithm utilizes the numerical relationship between the
next-to-train step number and the front of PQ, to appropri-
ately block foreground training processes when necessary.
We formally prove our algorithm satisfies synchronous con-
sistency in §3.3.

Since the throughput of proactively flushing directly deter-
mines the stall time of training processes, Frugal introduces
parallel flushing mechanism (§3.4) to improve efficiency of
flushing. Specifically, we find that the scalability of PQ deter-
mines flushing efficiency. Thus, Frugal tailors a two-level
PQ data structure for our scenario. Based on the observation
that 𝑃2𝐹 algorithm has a finite range of priority values, PQ is
characterized by a layer of priority index pointing to a lock-
free g-entry hash table whose entries share the same priority.
Thus, Frugal enjoys great scalability and time complexity of
𝑂 (1) for all PQ-related operations, in contrast to 𝑂 (log𝑁)
complexity and severe near-root conflicts in traditional tree
heap, where 𝑁 is the number of parameters.
We evaluate Frugal with typical embedding models in-

cluding graph embedding models and recommendation mod-
els on an 8× RTX 3090 server. Compared with SOTA train-
ing systems in their respective fields (i.e., DGL-KE [1] and
NVIDIA HugeCTR [12]), Frugal boosts throughput by 1.2-
1.4× and 6.1-8.7× respectively. Compared with existing sys-
tems on datacenter GPUs, Frugal can achieve similar through-
put using merely RTX 3090s, with a 4.3× cheaper cost.
Overall, this paper makes the following contributions:

• It analyzes two pitfalls of existing training systems on
commodity GPUs, i.e., low collective communication band-
width and CPU involvement overhead.

• It introduces Frugal, an embedding model training sys-
tem on commodity GPUs, with goals of alleviating GPU-
GPU communication and reducing CPU-involvement over-
head by parallel flushing GPU-GPU communication to
host memory proactively.

• Comprehensive experiments demonstrate the effective-
ness and efficiency of Frugal’s design.
Code of Frugal is available at https://github.com/thustorage/

Frugal.

1Frugal achieves synchronous consistency [40, 49], i.e., never read/modify
an outdated parameter. Thus, Frugal does not affect model convergence.

https://github.com/thustorage/Frugal
https://github.com/thustorage/Frugal

Frugal: Efficient and Economic Embedding Model Training with Commodity GPUs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

v0 v1 v2

GPU0

v3 v4

GPU1

k0 k4 k5 k3 k1

k0 k4 k5 k1 k3
❶ bucket keys

k0 k1 k3 k4
❷ all_to_all keys

v4
❸ query cache

❹ all_to_all embs

❺ reorder
v0 v4 v1

v0 v4 v5 v3 v1

Comm. OP
Local OPLabels

DNN

ID-type features
…k1 k3

…v1

Em
b
Ta
bl
es

GPU Cache

(b)(a)

v3 v0 v1

v5 v3

v3

data
copy

data
copy

Figure 2. (a) Simplified embedding model structure. (b) Ar-
chitecture of existing multi-GPU training systems.

2 Background and Motivation
2.1 Embedding Model
Model structure. Embedding models drive the main rev-
enues of technology companies, leading to substantial in-
vestments in computational resources for their development
and deployment. For example, Meta states that around 79%
of the computation resources of their AI datacenter are spent
on embedding models [31, 35].

Unlike classic deep learning models used in CV and NLP,
embedding models are primarily applied to learning tasks
on high-dimensional ID-type features (IDs) such as user IDs
and graph node IDs. Since IDs can not be fed into DNN di-
rectly, embedding models leverage the embedding technique
to bridge IDs to DNN. As illustrated in Figure 2a, embed-
ding models consist of two parts: embedding layer (embed-
ded tables) and DNN. 1) The embedding layer is used to
process IDs by mapping original high-dimensional IDs to
low-dimensional dense vector representations (called em-

beddings), which can then be fed into DNN for learning.
Specifically, for each type of ID, the embedding layer main-
tains a two-dimensional matrix called embedding table with
a shape of 𝑐 × 𝑑 where each row represents an embedding
vector. Here, 𝑐 denotes the size of the value domain space for
this type of feature, and 𝑑 denotes the embedding dimension.
With embedding tables, the embedding layer treats IDs as
keys and looks up dense low-dimensional embedding vec-
tors (values) on them. 2) The DNN layer handles both dense
inputs (omitted in this figure) and embedding vectors. It com-
bines dense inputs with all embedding vectors, aggregating
them as inputs to DNN for the final prediction.

Embedding bottleneck. Extensiveworks from both acad-
emy [46, 47] and industry[22, 23, 25, 55] report that the em-
bedding layer tends to become the performance bottleneck.
For example, Alibaba [22, 23] and Facebook [25] reported
that the embedding layer of their production models account
for over 60% time. Thus, Frugal mainly focuses on optimiz-
ing embeddings. In this paper, we interchangeably use the
term embedding and parameter .

Datacenter GPU
(A100)

Commodity GPU
(RTX 4090)

Tensor FP16 312 TFLOPS 330 TFLOPS
Tensor FP32 156 TFLOPS 83 TFLOPS

Memory Capacity 80 GB 24 GB
Link Bandwidth 900 GB/s (NVLINK) 64 GB/s (PCIe 4.0)

Price $16000 $1600
Dollar per FP32-TFLOPS 103 $/TFLOPS 19 $/TFLOPS

Table 1.Main characteristics comparison between commod-
ity GPUs and datacenter GPUs.

Multi-GPU embedding model training. As shown in
Figure 2b, existing multi-GPU embedding model training
systems [12, 38] tend to maintain multi-GPU embedding
cache to absorb accesses to host memory. In these systems,
to query or modify the latest parameters on other GPUs,
it is subject to i) collective communication overhead (➋➍),
and ii) CPU-involvement software overhead (➊➎). These
overheads get more severe on commodity GPUs, as we will
describe later.

2.2 Commodity GPU
GPUs can be classified into two categories: data center GPUs
(e.g., NVIDIAA100, A30) and commodity GPUs (e.g., NVIDIA
RTX 3090, 4090). Table 1 lists the main characteristics of a
representative GPU from each category. Datacenter GPUs
tend to be overpriced and some of the top-tier models (e.g.,
A100-SXM) are sold in 8-card bundles only. Therefore, for
medium-sized companies, research labs, or individual re-
searchers, commodity GPUs are often a more cost-effective
choice. Commodity GPUs bring both opportunities and chal-
lenges to embedding model training:
• Opportunities: Adequate and cost-effective compu-
tational power. As shown in Table 1, commodity GPUs
such as RTX 4090 now offer comparable FP32 TFLOPS to
datacenter GPUs such as A100, with even greater FP16
TFLOPS surpassing the A100, yet priced at only a tenth of
A100’s cost. In terms of the cost-performance ratio ($/T-
FLOPS), RTX 4090 is only 18.4% of A100’s cost.

• Challenges: Limited communication resources. How-
ever, compared to datacenter GPUs, commodity GPUs suf-
fer from limited communication resources. As shown in
Figure 1b, new commodity GPUs do not support NVLink
and PCIe P2P [28]. They need CPU to coordinate cross-
GPU communication and bounce the data on host memory.
The GPU→host memory→GPU copy not only increases
the communication latency but may lead to bandwidth
bottlenecks at the CPU root complex [18].
Discussion: Speculation on communication resources

of future commodity GPUs. Over time, NVIDIA has grad-
ually weakened the communication capabilities in commod-
ity GPUs to differentiate them from datacenter GPUs. Early
models (e.g., TITAN) supported both additional link (NVIDIA

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, & Youyou Lu

SLI [5], which can link together 4 GPUs) and PCIe P2P, then
only 2-GPU NVBridge [6] (10/20-series), and now no P2P
supported (30/40-series). Based on this historical trend, we
think that it is highly likely that support for P2P on com-
modity GPUs will not be reinstated.

2.3 Unified Virtual Addressing (UVA)
CUDA provides the Unified Virtual Addressing (UVA) [2]
feature, which allows mapping of the current GPU memory,
other GPU memories, and host memory to the same virtual
address space, so that GPU kernels can directly access the
entire virtual address space using load/store instructions.
For fine-grained data access, UVA can achieve much lower
latency compared to DMA engine copies (cudaMemcpy), as
the entire process does not require CPU involvement [51].
Due to hardware limitations, the UVA feature on cur-

rent commodity GPUs is restricted. Unlike datacenter
GPUs supporting direct access to both host memory and
other GPUs, commodity GPUs only support direct access to
host memory, but not to other GPUs.

2.4 Motivation
Experiment: impact of commodity GPUs on embed-
ding model training. While there have been numerous
research works [4, 8, 38] on embedding model training, they
are specially designed for datacenter GPUs, relying on PCIe
P2P features that are not available on commodity GPUs.
We take NVIDIA HugeCTR [4] as an example and run a
microbenchmark to analyze the performance difference of
existing systems between datacenter and commodity GPUs.
HugeCTR is an NVIDIA-customized embedding model train-
ing framework for recommendation and advertising models,
which integrates distributed GPU caching to reduce host
memory access. We train a DLRM [35] model on a real-world
dataset (Avazu [10]) with 4 RTX 3090 and 4 A30 GPUs re-
spectively; Both types of GPUs are linked with the same
PCIe 4.0 bus (with a link bandwidth of 32 GB/s); please see
§4 for the detailed server configurations.

Figure 3a illustrates that the training throughput on com-
modity GPUs decreases by up to 37% compared to datacenter
GPUs. To analyze the underlying reasons behind this per-
formance gap, we decouple the time spent on one iteration
(including forward, backward, and optimizing steps) into the
following components: collective communication (comm.),
host memory access (host DRAM), local GPU cache access
(cache), and other operations like DNN computation (other).
As shown in Figure 3c, the performance gap between two
types of GPUs mainly arises from 1) collective communica-
tion, and 2) cache miss processing (i.e., host DRAM time).
Analysis. Based on the above results, we find that there

are two reasons leading to the performance gap.

1) Low collective communication bandwidth. A high per-
centage (54 − 72%) of time difference is collective communi-
cation. As stated in §2.1, the main communication pattern
of distributed embedding model training is all_to_all primi-
tive, which is used for exchanging inputs (embedding keys)
and outputs (embeddings) of GPU cache queries. However,
according to our benchmark (Figure 3b), the all_to_all com-
munication bandwidth on commodity GPUs is only 54% of
that on datacenter GPUs. The primary reason is the lack of
support for PCIe P2P communication in commodity GPUs,
which introduces additional copying overhead with data
transfer through the host memory’s bounced buffer.
2) CPU involvement overhead during GPU-GPU commu-

nication. Since commodity GPUs lack the support of both
PCIe P2P and UVA features during GPU-GPU communi-
cation, missing parameters in local GPU caches must be
intermediated by CPU software, which introduces multiple
additional data copies [51] (Figure 2b). This results in cache
miss path processing time accounting for up to 43% of the
entire caching system.
We summarize §2.2 and this section: with adequate and

cost-effective computational power, commodity GPUs should
have been the ideal choice for memory-intensive embedding
model training. However, existing systems are designed only
for datacenter GPUs. Without consideration of the limited
communication resources of commodity GPUs, existing sys-
tems are bottlenecked by communication and can not fully
unleash the potential of commodity GPUs.

3 Design & Implementation
We introduce Frugal, a multi-GPU embedding model train-
ing system tailored for commodity GPUs, with the purpose
of overcoming the deficiency of communication resources
and fully leveraging the cost-effectiveness advantages of
commodity GPUs. As shown in Figure 5, Frugal follows the
basic structure of existing systems, organizing commodity
GPU memory and host memory into a two-tiered structure,
where GPU memory caches hot parameters.

Frugal focuses on synchronous training instead of asyn-
chronous training for the following reasons. First, asyn-
chronous training is notorious for poor model convergence,
which may bring significant revenue losses and is unaccept-
able in key applications of embedding models (e.g., recom-
mendation, advertising). For example, prior work has shown
that asynchronous training can cause up to an 8% drop in
AUC [32], while Alibaba reports that even a modest 0.1% de-
cline in AUC can translate into a significant revenue loss for
commercial systems [56]. Second, synchronous training is
the mainstream training paradigm in industrial applications.
Prominent industrial embedding training frameworks only
support synchronous training (e.g., NVIDIA HugeCTR).
In this section, before describing the detailed designs of

Frugal, we first outline its key idea.

Frugal: Efficient and Economic Embedding Model Training with Commodity GPUs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

B
an

dw
id

th
(G

B
/s

)

46%

2

4

Transfer size (Bytes)
1M 100M

Th
ro

ug
hp

ut

A30 (datacenter) RTX 3090 (commodity)

37%

0

1.5×105

3.0×105

Batch size
128 40966144

comm. host DRAM cache other
A30
RTX 3090

La
te

nc
y

(m
s)

0

50

100

Batch size
128 256 512 1024 1536 2048 4096

(a) (b) (c)

Figure 3. Motivation. (a) Training throughput on 4 NVIDIA A30 (datacenter) and RTX 3090 (commodity) GPUs. (b) All-to-all

collective communication bandwidth on A30 and RTX 3090. (c) Time breakdown of one training iteration.

Hot parameters 3 Cold parameters
Comm. (critical path) Comm. (non-critical path)

Legend

(a) Existing systems (e.g., HugeCTR)

① Collective communication
on critical path

② GPU1/2 passively wait for GPU0 queries (critical path)

host memory 3 4 5 6

③ CPU involves

(b) Frugal

① No collective communication on critical path

host memory 0 1 2 3 4 5 6

② GPU1/2 proactively
flush params

（non-critical path）

③ CPU-
bypass UVA

GPU0 0

0

GPU1 1 GPU2 2

GPU0 0 GPU1 1 GPU2 2

Figure 4. Key idea of Frugal. Three design differences

between Frugal and existing systems are denoted as ➀-➂.

3.1 Key Idea
The observation of Frugal is that the communication be-
tween commodity GPUs must be bounced on host memory,
which can be retrofitted for maintaining consistency among
multiple GPU caches at low cost. Based on this observation,
Frugal introduces the key idea of proactively flushing.
Key idea: proactively flushing. As shown in Figure 4,

unlike existing systems where all GPUs passively wait for
queries from other GPUs and all communication is on the
critical path of training (Figure 4a), Frugal decouples GPU-
GPU communication (e.g., GPU1→GPU0) into two steps,

1) GPU1→host memory (on the non-critical path): where
GPU1 proactively flushes the latest parameters that GPU0
needs to access into host memory, by foreseeing future pa-
rameter access traces.

2) host memory→GPU0 (on the critical path): whereGPU0
directly reads all non-local parameters on host memory.

With such decoupling design, Frugal can reduce the com-
munication latency exposed in the critical path by hiding

half of the communication in the non-critical path. Note
that Frugal does not introduce any additional data move-
ment in terms of GPU communication, since for commodity
GPUs, the inter-GPU communication is inherently required
to bounce on the host memory.
Aside from hiding communication overhead, proactively

flushing provides another benefit: alleviating CPU (software)
overhead by UVA-enabled host memory retrieving. Given
that proactively flushing has ensured the latest parameters
can always be flushed into host memory before GPU re-
trieving, Frugal can eliminate the coordination of CPU and
transfer the cache miss path processing from CPU-side soft-
ware to GPU-side hardware. Specifically, Frugal fuses the
local GPU cache access and host memory access into one
GPU kernel by utilizing the limited UVA features of com-
modity GPUs. It enables GPUs to directly access parameters
in host memory with a zero-copy manner, fully bypassing
CPU and eliminating the additional data copies (§2.4).

Challenges.Although the key idea of proactively flushing
is conceptually simple, the real challenge lies in a crucial
question: how to maintain the consistency of proactively
flushing with low overhead? It can be boiled down to two
following challenges.

First, we need to ensure the correctness of training consis-
tency. In other words, proactively flushing needs to be done
in a timely manner, so as to prevent GPUs from reading out-
dated versions of parameters from host memory. As stated in
§3, inconsistency may result in reduced model accuracy or
even non-convergence of training. Second, we need to mini-
mize the cost of flushing. A straightforward write-through
flushing policy for all the updates leads to long stalls in GPU
computation (§4.3).

Our solution. To achieve the two aforementioned goals,
Frugal introduces priority-based proactively flushing algo-
rithm (𝑃2𝐹 algorithm, §3.3). Its key idea is to prioritize flush-
ing parameter updates that are about to be accessed to host
memory, while selectively deferring others. We define a pa-
rameter update’s priority as the training step number at
which each parameter will be accessed next. Then, Frugal
organizes all lingering updates using PQ.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, & Youyou Lu

To ensure correctness, Frugal utilizes the numerical rela-
tionship of the front of the PQ, to stall foreground training
processes when necessary, and prevent them read outdated
parameters on host memory. We prove that our algorithm
satisfies synchronous training consistency.

To achieve a high efficiency, we introduce parallel flushing
mechanism (§3.4) to speedup priority-related operations in
𝑃2𝐹 algorithm. We find that the PQ scalability is the key to
flushing efficiency. Thus, Frugal tailors a high-performance
two-level concurrent PQ data structure and adopts scenario-
specific optimization to improve flushing efficiency.

3.2 Frugal Overview
As shown in Figure 5, Frugal primarily consists of two
types of processes: training process and controller process.
There are a total of 𝑛 training processes, where 𝑛 represents
the GPU count. Each training process handles model train-
ing while maintaining private embedding caches of each
GPU. The controller process manages the complete set of
parameters in host memory, and exposes them to all training
processes via a shared memory interface. The controller pro-
cess proactively flushes parameter updates (first buffered in
the update staging queue) into host memory by running 𝑃2𝐹

algorithm (§3.3), with the help of a customized two-level PQ
(§3.4).

The controller process comprises four main components.
1) Sample queue. Frugal prefetches all IDs of 𝐿 steps in

the future, and stores them in this queue. Here, 𝐿 is a hyper-
parameter that is set to 10 by default.
2) Update staging queue. This queue maintains all param-

eter updates that will be flushed to host memory. After a
training process updates the cache in its local CPU, it also
inserts the updates into the update staging queue.

3) Two-level priority queue (PQ).A customized PQ supports
high-concurrency operations such as enqueue, dequeue, and
adjusting the priority of an existing element (adjustPriority).
It maintains delayed updates according to their priority. Up-
dates in the PQ are sorted based on their next access time
(i.e., priority); updates to items accessed earlier have a higher
flush priority (§3.3).

4) Flushing threads. The controller process maintains sev-
eral background flushing threads, each independently fetch-
ing the highest-priority parameter updates from the PQ and
flushing them to host memory (§3.4).
With the assistance of these components, the parameter

query and update operations in Frugal proceed as follows:
For parameter query operations in forward, the training

process first checks its local GPU cache. If not found, Fru-
gal utilizes the UVA feature of GPU to directly access the
complete set of parameters in host memory, achieving CPU-
bypass and zero-copy retrieval of the missing parameter.

For parameter update operations in backward, the training
process first updates the local GPU cache and then inserts the
parameter update into update staging queue while notifying

GPU0 GPU1 GPU2 GPU3

host memory

Query
(CPU-bypass)

Controller Process

Trainer0
Training Processes

Sample
queue

Update staging
queue

Two-level
priority queue (PQ)

Flushing
thread

PQ.Deq
ueue

𝒉 =	PQ.Top()

PQ.AdjustPriority
wait until

ℎ > 𝑆𝑡𝑒𝑝_𝑛𝑜PQ.Enqueue

Trainer1 Trainer2 Trainer3

Parallel flushing

GPU

CPU
Update

Priority-based
proactively flushing

algorithm

Figure 5. Frugal design overview.

the controller process. In the background, the controller pro-
cess records them in the corresponding g-entries, and adjusts
their priorities in the PQ. Finally, when the updates dequeue
from PQ, flushing threads flush them into host memory and
finish updates.

3.3 Priority-based Proactively Flushing (𝑃2𝐹)
Algorithm

Frugal designs 𝑃2𝐹 algorithm to timely flush updates to
host memory before GPU reads in priority. In this section,
first, we introduce the structure of metadata (i.e., g-entry)
maintained for each parameter to calculate priority. Then,
we give a formal definition of priority. Next, we describe
the specific algorithm and provide an example illustrating
its detailed process and advantages over the write-through
strategy. Finally, we prove that our algorithm satisfies syn-
chronous training consistency.

Metadata of parameters (g-entry). To calculate the pri-
ority, Frugal maintains metadata (referred to as g-entry) in
PQ for two categories of parameters: i) Parameters soon to
be accessed (i.e., those in the sample queue). ii) Parameters
with pending updates not yet flushed to host memory (i.e.,
those in the update staging queue).

Specifically, each g-entry includes four following fields:
• key: the key of parameter.
• 𝑅 set: read set, a collection of training step numbers which
the parameter will soon be accessed.

• 𝑊 set: write set, a collection of ⟨step_no, Δ ⟩ pairs record-
ing all pending parameter updates not yet flushed to host
memory, where Δ represents gradients.

• priority: priority of this g-entry. A numerically smaller
priority means the target item is accessed earlier, and
needs to be flushed earlier. Formally, the priority of each
parameter’s g-entry is defined as in Equation (1):

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =

{
min{𝑅 set }, when𝑊 set ≠ ∅
∞,when 𝑅 set = ∅, or𝑊 set = ∅ (1)

Algorithm details. For training processes, assume the
current training step number (step_no) to be trained is 𝑠 .
1) The condition for starting training at step 𝑠 is: the priority

Frugal: Efficient and Economic Embedding Model Training with Commodity GPUs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

𝑝R/W setkey

∞Rr: [0]
W: ∅	𝑘!

∞Rr: [0, 1]
W: ∅𝑘"

∞Rr: [0]
W: ∅	𝑘#

rank 1 	𝑘!

rank 0 𝑘"	𝑘#
Step 0

𝑝R/W setkey

∞Rr: ∅
W: [⟨0, Δ!⟩]	𝑘!

1Rr: [1]
W: [⟨0, Δ"⟩]𝑘"

∞Rr: ∅
W: [⟨0, Δ#⟩]	𝑘#

𝑝R/W setkey

∞Rr: [2]
W: ∅	𝑘!

∞Rr: [1]
W: ∅𝑘"

∞Rr: ∅
W:[⟨0, Δ#⟩]	𝑘#

𝑝R/W setkey

∞Rr: [2]
W: ∅	𝑘!

∞Rr: ∅
W: [⟨1, Δ"′⟩]𝑘"

∞Rr: ∅
W: [⟨0, Δ#⟩]	𝑘#

rank 1

rank 0 𝑘"
Step 1

rank 1 	𝑘!

rank 0 	𝑘!
Step 2

PQ.top() is ∞,
∞ > Step 0,

continue train

remove Step 0 in R,
record updates in W

PQ.top() is 1,
1 ≯ Step 1,

wait

PQ.top() is ∞,
∞ > Step 1,

continue train

PQ.top() is ∞,
∞ > Step 2,

continue train

remove Step 1 in R,
record updates in W

𝑝R/W setkey

2Rr: [2]
W: [⟨0, Δ!⟩]	𝑘!

1Rr: [1]
W: [⟨0, Δ"⟩]𝑘"

∞Rr: ∅
W: [⟨0, Δ#⟩]	𝑘#

prefetch
Step 0&1

prefetch
Step 2

finish
training

flush
Δ!, Δ"

❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

Figure 6. Example of 𝑃2𝐹 algorithm. The prefetching training step length 𝐿 = 2. All modifications to g-entries are highlighted
in red. The below table shows the contents of PQ, where 𝑝 represents the priority of g-entries.

value at the front of PQ is strictly greater than 𝑠 . 2) Once the
condition is met, the training process completes the forward
and backward computations of the neural network. The gra-
dients produced by the backward process are transferred
to the update staging queue. 3) The controller process re-
moves 𝑠 from the 𝑅 set of g-entry corresponding to the batch
parameters, and inserts s and the gradient into the𝑊 set;

The controller process is primarily responsible for sample
preloading and transferring elements from the update stag-
ing queue to the PQ. 1) It maintains a separate prefetch thread
that, whenever the depth of the sample preload queue is less
than 𝐿 (assuming the current depth is 𝐿_𝑛𝑜𝑤), prefetches pa-
rameter keys to be accessed in the next (𝐿−𝐿_𝑛𝑜𝑤) steps and
stores them in the sample queue. For each prefetched param-
eter, assuming its access step number is 𝑠 , 𝑠 is inserted into
its g-entry’s 𝑅 set. 2) It continuously retrieves elements from
the update staging queue (in the form ⟨𝑘𝑒𝑦, 𝑠𝑡𝑒𝑝_𝑛𝑜,Δ⟩), and
inserts the gradient Δ and training step number step_no into
the 𝑅 set of the corresponding g-entry.
In addition, the controller process also maintains several

background flushing threads. They continuously retrieve
the g-entry with the highest priority (i.e., numerically small-
est priority) from the PQ and flush the parameter updates
recorded in its𝑊 set to host memory.

Example. Figure 6 illustrates a specific example of the 𝑃2𝐹

algorithm. ❶ Before training step 0, the controller process
performs a lookahead for parameter keys to be accessed
at step 0 (𝑘2, 𝑘3, 𝑘1) and step 1 (𝑘2) respectively. It sets the
𝑅 set of the corresponding g-entry in the PQ and updates
their priorities. ❷ At this point, the priority at the front of
the queue is ∞, which is numerically greater than step 0,
so training step 0 proceeds directly without block. ❸ After
completing training for step 0, the training process generates
the gradient Δ{2,3,1} . Subsequently, the controller process
removes step 0 from the 𝑅 set of Δ{2,3,1} ’s g-entry and inserts
<0,Δ{2,3,1}> into the𝑊 set of Δ{2,3,1} ’s g-entry. ❹ Before

training step 1, the controller process performs a lookahead
for parameter keys to be accessed at step 2 and sets the R
set, updating the priorities. ❺ At this point, the priority at
the front of the queue is 1, which is not greater than step 1,
so training processes are blocked. ❻-❼ Training for step 1
does not begin until the flushing thread writes Δ1,2 to host
memory. ❽-❿ Training of step 2 proceeds as steps 0 and 1.
After training, the system waits for flushing threads to write
all deferred parameter updates to host memory.
In this example, because parameter 𝑘_3 is not accessed

after step 0, the 𝑃2𝐹 algorithm delays flushing the update
of the gradient generated for 𝑘_3 at step 0, until after step
2 (as indicated by the blue dashed box in Figure 6). This
demonstrates the superiority of 𝑃2𝐹 algorithm, which prior-
itizes flushing parameters that are about to be accessed soon
while deferring updates for other parameters. In this way,
our algorithm can effectively reduce the computation stall,
caused by flushing, of foreground training processes, thus
improving training efficiency.

Proof of synchronous consistency.Here, we prove that
the 𝑃2𝐹 algorithm adheres to synchronous training consis-
tency. The proof is divided into two components: i) From syn-
chronous training consistency, we prove that synchronous
training consistency is equivalent to invariant (2). ii) From
the 𝑃2𝐹 algorithm, we prove that it guarantees the fulfillment
of invariant (2).

At step 𝑠 , there does not exist any g-entry that simul-
taneously satisfies: {

𝑊 set ≠ ∅
𝑠 ∈ 𝑅 set (2)

For i), from synchronous training consistency, it is equiv-
alent to the following statement that at any given moment,
there should be no read operations on "stale parameters",
which refers to parameters with pending updates. Given that

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, & Youyou Lu

the 𝑅 set of g-entry records future read sets and the𝑊 set
records pending updates, this is equivalent to invariant (2).

For ii), from the process of the 𝑃2𝐹 algorithm, note that the
condition of step 𝑠 is that the priority value of the frontmost g-
entry in the PQ strictly exceeds 𝑠 . According to the definition
of priority (Equation (1)), at this point, no g-entry satisfies
both a non-empty𝑊 set and the existence of elements in the
𝑅 set less than or equal to 𝑠 . This ensures the fulfillment of
invariant (2).

In conclusion, the 𝑃2𝐹 algorithm adheres to synchronous
training consistency. □

3.4 Parallel Flushing
As described in §3.3, flushing threads involve numerous high-
concurrency operations of PQ, including enqueue, dequeue,
and adjust priorities. In practice, the PQ performance signifi-
cantly impacts training performance for two main reasons: 1)
The performances of enqueue and adjusting priorities affect
the time of backward pass. During the backward pass, ad-
justing priority is on the critical path. 2) The performance of
dequeue affects the throughput of flushing threads, thereby
determining the training processes’ stall time.
The straightforward implementation of a PQ is using a

classic binary tree min-heap. However, its performance is
suboptimal in our practice (please see Exp #4). It suffers
from O(log𝑁) operation complexity (where 𝑁 is the number
of parameters) and limited concurrency caused by near-root
contention.
Two-level concurrent priority queue. Based on the

characteristics of 𝑃2𝐹 algorithm, Frugal customizes a two-
level PQ. The idea is primarily based on the following obser-
vations: i) According to the definition of priorities of Equa-
tion (1), the priority values range within a finite set which
contains integers from 0 to𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 . Here𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 is the
maximum number of training steps. ii) The priority value of
a specific g-entry never decreases.
Figure 7 illustrates the structure of two-level PQ. It con-

sists of two levels: the first level is a priority index, which is a
pointer array of length (𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 + 2). Each slot represents
a priority value (ranging from 0 to𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 , or∞), point-
ing to the second level, a hash table of g-entries with the
same priority value. The second level employs a lock-free
dynamic scalable hash table structure [34], offering excellent
concurrency performance and efficient memory usage facing
dynamic capacity changes.

The operations in the two-level PQ are as follows:
• Enqueue: Based on the priority of the g-entry, insert it
directly into the corresponding g-entry hashtable.

• Dequeue: Sequentially scan the priority index from priority
0, until finding a non-empty hashtable, and dequeue one
g-entry from it. Dequeue can be batched to remove the
repeated scanning overhead.

• AdjustPriority: Suppose the priority of g-entry changes
from𝑝_𝑜𝑙𝑑 to𝑝_𝑛𝑒𝑤 . To prevent concurrency errorswhere

max_step……3210 	∞Priority
Index

Enqueue
AdjustPriority

scan Lower
bound

Upper
bound

OPT：scan range compression

g-entry hashtable
with priority 3

batched Dequeue

Figure 7. Structure of two-level priority queue tailored for
𝑃2𝐹 algorithm.

readers (dequeue operations) might not find the g-entry
in two corresponding hash tables, Frugal first inserts the
g-entry into the hash table corresponding to 𝑝_𝑛𝑒𝑤 , then
deletes it from the hashtable corresponding to 𝑝_𝑜𝑙𝑑 . De-
queue operations can identify an inconsistent g-entry by
comparing its priority with the priority of the hash table
in which it resides.
Frugal’s PQ design overcomes issues with the tree heap

structure. First, the time complexity of PQ-related operations
reduces to O(1). Moreover, it exhibits superior concurrency
performance (as demonstrated in §4), significantly reducing
the stall time of training processes. Additionally, the two-
level PQ is further optimized for Frugal’s scenario with the
following customization.
Optimization: scan range compression. In the orig-

inal design, the dequeue operation scanned from priority
0 sequentially, which could be costly given the length of
the priority index (i.e., step count during model training).
This optimization improves dequeue efficiency by compress-
ing the priority range that needs scanning. Its key obser-
vation is that the priority value of a specific g-entry never
decreases. Specifically, Frugal maintains two global vari-
ables that record the lower and upper bounds of all g-entry
priority values (excluding ∞). During dequeue scanning, it
only scans two intervals: ➀ the interval determined by the
upper and lower bounds, and ➁ ∞. Frugal ensures that
these intervals cover all g-entry priority values (not violate
correctness) but does not guarantee they are the exact supre-
mum and infimum (not ensuring accuracy).
The values for the bounds are determined as follows: as-

suming the current step is 𝑠 , for the lower bound, as the
priority value of each g-entry only increases, whenever an
item is dequeued, the lower bound is updated to its priority
value. For the upper bound, since the control process only
prefetches parameters for the next 𝐿 steps, the upper bound
is set to (𝑠 + 𝐿). In experimental evaluations, for PQ with
millions of entries, this optimization can reduce the time of
dequeue operation by 28%.

Frugal: Efficient and Economic Embedding Model Training with Commodity GPUs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Dataset #Vertexes #Edges #Relations Model Size

KG FB15k 592k 15k 1.3k 52 MB
Freebase 338M 86.1M 14.8K 68.8 GB
WikiKG 87M 504 M 1.3k 34 GB
Dataset #Features #IDs #Samples Model Size

REC
Avazu 22 49 M 40M 5.8 GB
Criteo 26 34 M 45M 4.1 GB

CriteoTB 26 882 M 4.37B 110.3 GB

Table 2. Datasets used in the real-world applications.

4 Evaluation
4.1 Experimental Setup
Testbed. We run experiments on a server with two Intel
Gold 6130 CPUs at 2.1 GHz, 1.5 TB of DRAM, and 8 NVIDIA
RTX 3090 commodity GPUs. Each GPU is connected to the
host via a PCIE 4.0×16 link.

Workloads. We use the following two workloads.
Synthetic workloads.We synthetic different embeddingmodel
traces to test Frugal and other baseline systems under dif-
ferent embedding ID (key) distributions. We generate keys
using three types of distributions: uniform distribution, and
Zipfian skewed distributions with parameters 0.9 and 0.99.
Unless otherwise specified, the embedding key space size
is 10 million, the embedding dimension is 32. In this work-
load, we only test the embedding part in the forward and
backward pass, and eliminate the DNN computation part.
Real-world workloads. We use two representative types of
real-world embedding models: knowledge graph (KG) and
recommendation models (REC). i) For the KG model, the
experiments use FB15k [15], Freebase [13] and WikiKG [7]
as the datasets. The model tested is TransE [15], with an
embedding dimension of 400 and a negative sampling batch
size of 200. Unless otherwise specified, the training batch
sizes for the two datasets are 1200 and 2000, respectively.
All these hyperparameter settings are consistent with those
in the original DGL-KE paper[54]. ii) For the REC model,
we use three real-world datasets, Avazu [10], Criteo and
CriteoTB [11]. The tested model is Facebook DLRM[35], with
an embedding dimension of 32. The DNN part employs a
fully connected network with the structure of 512-512-256-1.
All hyperparameter settings are consistent with those used
in the DLRM code repository [3]. Unless otherwise specified,
the default batch size is 1024.

We primarily evaluate only one representative model per
application, as different models typically share a similar em-
bedding layer, and all of our techniques focus on optimizing
this part. We will evaluate the sensitivity of all competitor
systems to different models in Exp #11.

Competitor systems. We compare Frugal with SOTA
training systems in their respective fields. i) For KG, we

PyTorch HugeCTR Frugal-Sync Frugal

(a) Uniform

0

500k

128 512
1024

1536
2048 128 512

1024
1536

2048

0
100k

128

Th
ro

ug
hp

ut (b) Zipf-0.9

0

500k

1M

128 512
1024

1536
2048 128 512

1024
1536

2048

0
100k

128

(c) Zipf-0.99

cache ratio=1% cache ratio=5%
Batch size

0
100k

128

0

500k

1M

128 512
1024

1536
2048 128 512

1024
1536

2048

Figure 8. (Exp #1) Microbenchmark.

compare Frugal with DGL-KE (without caching) and DGL-
KE-cached (a variant integrated with a multi-GPU cache).
ii) For REC, we compare Frugal with PyTorch (without
caching) and HugeCTR (with caching). Since the multi-GPU
caching feature of HugeCTR has not yet been integrated into
PyTorch, and DGL-KE is implemented based on PyTorch, to
ensure a fair comparison, we re-implement its multi-GPU
cache within PyTorch. Additionally, the experiments also
evaluate a baseline version of Frugal, called Frugal-Sync,
which uses a write-through strategy to synchronously flush
all updates to host memory.

Unless otherwise specified, all experiments use the follow-
ing configurations by default: the cache size (ratio) is set to
5% of the total parameters for the GPU-cached model, all
throughputs refer to samples per second, all GPUs on the
server are utilized by default, and 8 flushing threads are used.

Accuracy is not tested in the evaluation, as all competitor
systems meet the synchronous training consistency (§3.3).
We also omit the testing of cache hit ratios, as all competitor
systems follow the existing cache strategy in HugeCTR, thus
they share a similar hit ratio.

4.2 Microbenchmark
Exp #1: Microbenchmark. Frugal focuses on the embed-
ding process. To understand its effectiveness and eliminate
interference from DNN computations and KG-specific oper-
ations (graph sampling), we use synthetic workloads to eval-
uate the throughput of Frugal and other systems. We also
evaluate a UVM-capble [26] baseline system, called PyTorch-
UVM. It leverages the Unified Virtual Memory (UVM) in-
terface provided by CUDA to unify all GPUs’ memory and
host memory in one global unified virtual memory space.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, & Youyou Lu

SyncFlushing P2F

S
ta

ll
tim

e
(m

s) (a)

1

10

12
8
51

2
10

24
15

36
20

48

Throughput0

500k

1M(b)

12
8
51

2
10

24
15

36
20

48
Batch size

Figure 9. (Exp #2) Effect of priority-based proactively
flushing algorithm. SyncFlushing denotes the case of adopt-
ing write-through policy. (a) Stall time reduction of training

processes; please note that the y-axis is log-scale. (b) Training

throughput.

However, the performance of PyTorch-UVM is two orders of
magnitude slower than other systems. The reason is that
the minimum migrating granularity (page size) of UVM is
4KB, while the granularity of model updating is an embed-
ding (∼512B). Thus, UVM’s excessively large granularity will
cause a lot of additional data movement overhead. For this
reason, we emit its results in the following experiments.

From Figure 8, we observe that: first, Frugal’s throughput
is significantly higher than that of PyTorch, HugeCTR, and
Frugal-Sync, respectively reaching 1.5-10.2×, 4.3-11.3×, and
3.3-5.1×. The only exception is that when the batch size is ex-
tremely small, such as 128, the throughput of cache-enabled
systems is lower than that of PyTorch. This is because the
benefits brought by multi-GPU caching are outweighed by
the collective communication overhead.

Second, as the batch size increases, all cache-enabled sys-
tems can better leverage the advantages brought by GPU par-
allelism, yielding better performance. Third, straightforward
multi-GPU caching (HugeCTR) shows little performance
variance under different distributions. This is mainly due
to its communication overhead and CPU-involved software
overhead becoming the bottleneck for cache queries, while
the impact of cache hit rate remains minimal. Fourth, com-
pared to HugeCTR, Frugal-Sync and Frugal consistently
exhibit better throughput across different distributions and
cache sizes. We will analyze them detailedly in Exp #5.

4.3 Techniques
We evaluate the effectiveness of our proposed techniques and
show how much they contribute to the final performance.
Exp #2: Priority-based proactively flushing algorithm.
In Figure 9, we compare 𝑃2𝐹 algorithmwith thewrite-through
flushing scheme (denoted as SyncFlushing). We evaluate
the stall time of training processes and end-to-end training
throughput, the metrics that the flushing schemes mainly
affect. This experiment uses a synthetic workload with a
Zipfian-0.9 distribution and a 1% cache ratio; similar results
are observed with other settings.

CPU-involved UVA-enabled

La
te

nc
y

(µ
s) additional

copy overhead

0

200

Batch size
128 512 1024 1536 2048

Figure 10. (Exp #3) Effect of UVA-enabled host memory
access.

TreeHeap Frugal

G
-e

nt
ry

 u
pd

at
e

tim
e

(m
s)

(a)

5% 10%0

20

40

S
ta

ll
tim

e
(m

s) (b)

5% 10%
1

10

100

Th
ro

ug
hp

ut (c)

5% 10%0

50k

100k

150k

Cache ratio Cache ratio Cache ratio

Figure 11. (Exp #4) Effect of two-level priority queue.
(a) Mean time of updating g-entries in a batch. (b) Stall time

of training processes. (c) Training throughput.

We make the following two observations. 1) From Fig-
ure 9a, we can see that 𝑃2𝐹 algorithm can reduce the training
stall time by 34-101×, compared to SyncFlushing. The reason
is that 𝑃2𝐹 algorithm decouples some embedding updates
to non-critical paths. In contrast, SyncFlushing immediately
commits all the updates in the critical path, resulting in a
longer stall. 2) The reduction of stall time can improve the
end-to-end throughput by 3.5-5.3×, as shown in Figure 9b.
Exp #3: UVA-enabled host memory access. Frugal lever-
ages UVA-enabled host memory access to circumvent CPU
overheads when accessing host memory. This experiment
compares the performance of UVA-enabled host memory
access (Frugal) with CPU-involved host memory access
(PyTorch and HugeCTR).

Figure 10 shows the query latency of CPU-involved access
and UVA-enabled access across different batch sizes. For the
same batch size, UVA-enabled access lowers the host memory
access latency by 3.1-3.4×. This improvement is partly due
to the high concurrency of GPU, which enhances memory
access parallelism, and partly due to UVA can avoid extra
copy overhead on GPU (indicated by the arrow).
Exp #4: Two-level priority queue. This experiment com-
pares two different concurrent PQ designs: TreeHeap and
Frugal’s two-level PQ. TreeHeap is a concurrent binary tree
heap using per-node spinlocks. Both PQs are integrated into
the Frugal system to evaluate their real performance impact.
The experiment is conducted on KG model using Freebase
dataset; results on REC models share a similar conclusion.
We measure three metrics: a) The mean time to com-

plete all g-entries updates of a batch, which reflects the

Frugal: Efficient and Economic Embedding Model Training with Commodity GPUs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Ti
m

e
(m

s)
PyTorch
HugeCTR

Frugal-Sync
Frugal

Other
Cache
DRAM
A2A
Other
Cache
DRAM
A2A
Other
Cache
DRAM
A2A
Other
Cache
DRAM
A2A

comm.
host DRAM

cache
other

0
50

100
150

Batch size
128 512 1024 1536 2048

Figure 12. (Exp #5) Contributions of techniques to
performance. ‘comm.’ denotes communication.

efficiency of concurrent enqueue and adjustPriority oper-
ations. b) Stall time of training processes, which reflects the
efficiency of concurrent dequeue operations. c) End-to-end
training throughput.
Figure 11 shows the results. a) Frugal is 1.2-1.4× faster

than TreeHeap for completing g-entry updates in a batch.
b) Frugal reduces stall time by 74.0-106.8×, lowering the
stall time to milliseconds. This is because the 𝑂 (1) dequeue
in two-level PQ is more efficient than 𝑂 (log𝑛) in TreeHeap.
c) The efficiency of two-level PQ increases the training through-
put of Frugal by 2.1-3.3× compared to TreeHeap.
Exp #5: Contributions of techniques to performance.
To further analyze the contribution of the aforementioned
techniques to the final performance, we break down the
time of a single training step under a synthetic workload
with a Zipfian-0.9 distribution. The meaning of each metric
is the same as in §2.4. Figure 12 shows the results. First,
compared to PyTorch, HugeCTR introduces GPU cache and
significantly reduces host memory time by 22-55%. However,
this reduction comes at the cost of a 0.3-5.8× increase in the
cache update and collective communication.

Second, the introduction of synchronous flushing (Frugal-
Sync) reduces collective communication overhead in the for-
ward pass by approximately 29-53%, since it only accesses
local GPU cache. Additionally, Frugal-Sync accelerates host
embedding access by leveraging the UVA feature, reduc-
ing host memory time by up to 76%. As a result, Frugal-
Sync enhances training throughput by 1.2-2.8× compared
to HugeCTR. However, the performance improvement of
Frugal-Sync remains limited. The reason is that its write-
through policy may cause a long stall to aggregate all gradi-
ents and update parameters on DRAM.

Third, based on Frugal-Sync, Frugal introduces priority-
based proactively flushing algorithm that further decouples
the collective communication for host memory writes to
the background. Data shows that Frugal reduces collective
communication time by approximately 60-85% and reduces
host access time by about 98%. Consequently, the end-to-end
training throughput is further improved by 3.5-5.1×.

4.4 Overall Performance
Exp #6: Knowledge graph models (KG). Figure 13 illus-

DGL-KE DGL-KE-cached Frugal

Th
ro

ug
hp

ut (a) FB15k (b) Freebase (c) WikiKG

Cache ratio
0

200k

400k

5% 10% 5% 10% 5% 10%

Figure 13. (Exp #6) Training throughput of knowledge
graph models.

PyTorch HugeCTR Frugal

Th
ro

ug
hp

ut (a) Avazu (b) Criteo (c) CriteoTB

Cache ratio
0

500k

5% 10% 5% 10% 5% 10%

Figure 14. (Exp #7) Training throughput of recommen-
dation models.

trates the training throughput across different systems for
KG models. The cache ratios are set to 5% and 10%. For vari-
ous datasets and cache ratios, Frugal consistently achieves
significantly higher training throughput 1.2-1.5×, and 4.1-
7.1×, compared to DGL-KE and DGL-KE-cached respectively.
This demonstrates the efficacy of the Frugal technique,
where the proactively flushing design eliminates collective
communication and enhances training performance. Specif-
ically, Frugal can boost performance more on the larger
dataset (Freebase or WikiKG) since a larger ID space allows
more optimization room for asynchronous flushing. Notably,
the training throughput of DGL-KE-cached is up to 15.2%
lower than the vanilla DGL-KE. This suggests that simply
using existing multi-GPU caching on commodity GPUs can
lead to a slight decrease in throughput.
Exp #7: Recommendationmodels (REC). Figure 14 shows
the training throughput of recommendation models. Simi-
larly, Frugal consistently achieves significantly higher train-
ing throughput compared to PyTorch and HugeCTR, respec-
tively reaching 4.9-7.4× and 6.1-8.7×. The performance im-
provement is more pronounced for REC than for KG models,
which is expected due to the more memory-intensive nature.
Exp #8: Scalability. Figure 15 shows the training through-
put of all competitor systems across different numbers of
GPUs. First, the performance of systems with straightfor-
ward caching (DGL-KE-cached/HugeCTR) is comparable to
or even worse than that of systems without caching (DGL-
KE/PyTorch). It indicates that the benefits of caching are
outweighed by the overhead introduced by collective com-
munication. Second, after increasing the number of GPUs

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, & Youyou Lu

(a) KG

Th
ro

ug
hp

ut
DGL-KE / PyTorch
DGL-KE-cached/HugeCTR

Frugal-Sync
Frugal

0

200k

400k

2 4 6 8

(b) REC

0

400k

2 4 6 8
of GPUs

Figure 15. (Exp #8) Scalability of training. (a) KG: Free-
base dataset, (b) REC: Avazu dataset.

(a) KG

FB15k Freebase

Datacenter GPU (A30) Commodity GPU (3090)

Th
ro

ug
hp

ut

0
100k
200k
300k

2 3 4 2 3 4

(b) REC

Avazu Criteo

0
200k
400k
600k

2 3 4 2 3 4

of GPUs

Figure 16. (Exp #9) Cost efficiency of Frugal.

to a certain level (e.g., 4 in REC), systems without caching
are limited by the bandwidth of the CPU root complex and
the performance cannot scale up. Third, in contrast, Frugal
exhibits superior scalability on two workloads. Frugal can
enhance throughput by 1.2-4.9× across various numbers of
GPUs. However, due to the hardware limitations of commod-
ity GPU communication bandwidth, Frugal still can not
achieve fully linear scalability.
We currently do not consider cross-server distributed

training, since commodity GPUs are usually not equipped
with high-end NICs, which will cause the network to become
a bottleneck.

4.5 Cost Efficiency of Frugal
Exp #9: Cost efficiency vs. datacenter GPUs. To demon-
strate Frugal’s cost-effectiveness on commodity GPUs, this
experiment compares its performance on RTX 3090 GPUs
with existing systems on NVIDIA A30 GPUs (only showing
the best performance). Both A30 and 3090 are interconnected
with the same PCIe 4.0x16 link. Due to GPU resource con-
straints, we only evaluate up to 4 GPUs temporarily.

Figure 16 reveals that Frugal achieves comparable through-
put (89 − 97%) to datacenter GPUs. Considering the price
difference ($5,885 per A30 and $1,310 per RTX 3090), Frugal
improves the cost-performance ratio by 4.0-4.3×.

4.6 Sensitivity Analysis
Exp #10: Different flushing thread numbers. Figure 17
shows the REC training throughput of Frugal under differ-
ent numbers of flushing threads. The dataset is Avazu. The
training throughput initially increases with the number of
flushing threads (from 2 to 12), but then begins to decline

Th
ro

ug
hp

ut PyTorch
HugeCTR
Frugal-Sync
Frugal

of flushing threads

0

250k

500k

0 10 20 30

Figure 17. (Exp #10) Sensitivity to the number of flush-
ing threads.

DGL-KE/PyTorch
DGL-KE-cached/HugeCTR

Frugal

Th
ro

ug
hp

ut (a) KG (b) REC

of NN layers

0

500k

ComplEx
DistMult

SimplE
TransE 2 3 4 5 6

Figure 18. (Exp #11) Sensitivity to embedding models.

(since 14). This is because the throughput of Frugal’s flushing
dictates whether the foreground training processes can pro-
ceed to the next training step. If there are too few threads, the
foreground process experiences extended stalls. On the other
side, too many flushing threads will divert CPU resources
that would otherwise be used for model computation, caus-
ing a drop in performance. In practice, we set the number
of flushing threads to 12, which achieves an optimal balance
between high training throughput and CPU efficiency.
Exp #11: Different DNN models. For KG, we evaluate 4
different graph embedding models, including ComplEx [42],
DistMult [50], SimplE [24], and TransE [15]. For REC, we
evaluate the sensitivity by deepening the number of DNN
layers in DLRM. Figure 18 shows the results. We observe that
the performance of Frugal is consistently better than other
systems across different models. Since our design mainly
targets the embedding part, it has no side effects on the
neural network part. Thus, changes in different DNN model
will only affect how much performance gain we achieve.

5 Related Work
Multi-GPU systems built for embedding models. Exist-
ing works commonly cache hot embeddings into multiple
GPUs to form a distributed caching [4, 9, 30, 36, 53]. They
can be classified by caching policy and access method.

For the caching policy, they can be classified into three cat-
egories: replication [45, 52], sharding [4, 9, 30, 33, 36, 51, 53],
and replication-sharding hybrid [8, 31, 38]. Replication pol-
icy replicates cache across GPUs, which is simple but can
not fully utilize the aggregated memory capacity of multi-
ple GPUs. Sharding policy shards hot embeddings to GPUs,

Frugal: Efficient and Economic Embedding Model Training with Commodity GPUs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

which tends to result in some hot parameters being parti-
tioned to remote GPUs. Thus, the marginal performance
gain (from the increase of hit rates) from multi-GPU cache
capacity expansion is diminishing. To this end, replication-
sharding hybrid policy combines these two policies and se-
lectively replicates embeddings by solving an optimization
problem. However, both replication as well as replication-
sharding hybrid policies are only applicable to scenarios with
frozen embeddings (such as inference), due to the heavy syn-
chronization overhead imposed by replicas. Frugal pertains
to a sharding policy in essence. It reduces the overhead of
cross-GPU parameter access by proactively flushing.

For the access method, they can be categorized as message-
based [4, 9] and unified address-based [33, 51]. Message-
based systems query distributed cache via all_to_all col-
lective communication primitive, which becomes the bottle-
neck on commodity GPUs for limited communication band-
width (§2.1). Unified address-based systems allow each GPU
to load/store the data on other GPUs, eliminating redundant
data copies in the message-based systems. These systems
rely on unthrottled UVA features of datacenter GPUs andwill
not work on commodity GPUs. In contrast, Frugal takes full
advantage of the restricted UVA feature on commodity GPUs
to save communication overhead based on the proactively
flushing design.
Deep learning systems on commodity GPUs. Commod-
ity GPUs have been widely applied to the training and infer-
ence systems of deep learning models [17, 18, 29, 37, 39]. For
the training scenario, FTPipe [17], Harmony [29] and Mo-
bius [18] design sophisticated plans of pipeline parallelism
to achieve well load balancing across multiple commodity
GPUs [17] or hide the CPU-GPU communication overhead
caused by heterogeneous memory [18, 29]. Like Frugal, Mo-
bius also considers the collective communication bandwidth
bottleneck of commodity GPUs caused by the CPU root com-
plex, but alleviates it by mapping different pipeline stages
to different NUMAs. On the other hand, FlexGen [37] and
PowerInfer [39] focus on the inference scenario and enable
a single GPU to run ultra-large LLM with host memory of-
floading. They mainly focus on reducing the model swap
overhead between the host and GPU, by utilizing reasonable
scheduling [37] or the sparsity of model structure [39].
Unlike these works, which focus on dense models (e.g.,

LLM) that require dense parameter access, Frugal concen-
trates on embeddingmodels whose parameter access is sparse.
To the best of our knowledge, no prior works consider embed-
ding models, including recommendation models and knowl-
edge graphs, on commodity GPUs.

6 Conclusion
Commodity GPUs are highly favored for cost-efficient com-
puting power. Ideally, they are well suited for the relatively

low computational demands of memory-intensive embed-
ding models. However, the limited communication resources
hinder current systems to unleash their potential. We in-
troduce Frugal, a system designed for embedding model
training on commodity GPUs. By leveraging the proactive
flushing mechanism, Frugal effectively decouples critical
communication paths, significantly reducing GPU-GPU com-
munication overhead and CPU involvement. Through com-
prehensive experiments on recommendation and graph em-
bedding models, Frugal demonstrates more efficiency and
cost-effectiveness compared to SOTA systems.

Acknowledgements
We sincerely thank our shepherd Prof. Jason Lowe-Power for
helping us improve the paper. We also thank the anonymous
reviewers for their feedback. This work is supported by the
National Natural Science Foundation of China (Grant No.
62332011).

References
[1] awslabs/dgl-ke: High Performance, Easy-to-use, and Scalable Pack-

age for Learning Large-scale Knowledge Graph Embeddings. https:
//github.com/awslabs/dgl-ke. (Accessed on 01/30/2024).

[2] Cuda Driver API:: Cuda Toolkit Documentation. https://docs.nvidia.
com/cuda/cuda-driver-api/group__CUDA__VA.html. (Accessed on
01/15/2024).

[3] FacebookResearch/DLRM: An Implementation of a Deep Learning Rec-
ommendation Model (DLRM). https://github.com/facebookresearch/

dlrm. (Accessed on 01/31/2024).
[4] NVIDIA-Merlin/HugeCTR: HugeCTR Is a High Efficiency GPU Frame-

workDesigned for click-through-rate (CTR) Estimating Training. https:
//github.com/NVIDIA-Merlin/HugeCTR. (Accessed on 01/28/2024).

[5] Nvidia sli. https://docs.nvidia.com/gameworks/content/technologies/

desktop/sli.htm. (Accessed on 10/20/2024).
[6] Nvlink high-speed gpu interconnect | nvidia quadro. https://www.

nvidia.com/en-us/design-visualization/nvlink-bridges/. (Accessed on
10/20/2024).

[7] Ogb-lsc @ kdd cup 2021 | open graph benchmark. https://ogb.stanford.
edu/kddcup2021/wikikg90m/#dataset. (Accessed on 10/21/2024).

[8] quiver-team/torch-quiver: PyTorch Library for Low-Latency, High-
Throughput Graph Learning on GPUs. https://github.com/quiver-

team/torch-quiver. (Accessed on 01/28/2024).
[9] Sparse Operation KIT — Documentation. https://nvidia-merlin.github.

io/HugeCTR/sparse_operation_kit/master/intro_link.html. (Accessed
on 01/28/2024).

[10] Click-Through Rate Prediction | Kaggle. https://www.kaggle.com/c/

avazu-ctr-prediction, 2021.
[11] Display Advertising Challenge | Kaggle. https://www.kaggle.com/c/

criteo-display-ad-challenge, 2021.
[12] NVIDIA/HugeCTR: HugeCTR Is a High Efficiency GPU Framework

Designed for Click-through-rate (CTR) Estimating Training. https:
//github.com/NVIDIA/HugeCTR, 2021.

[13] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for struc-
turing human knowledge. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’08, page
1247–1250, New York, NY, USA, 2008. Association for Computing
Machinery.

https://github.com/awslabs/dgl-ke
https://github.com/awslabs/dgl-ke
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/dlrm
https://github.com/NVIDIA-Merlin/HugeCTR
https://github.com/NVIDIA-Merlin/HugeCTR
https://docs.nvidia.com/gameworks/content/technologies/desktop/sli.htm
https://docs.nvidia.com/gameworks/content/technologies/desktop/sli.htm
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://ogb.stanford.edu/kddcup2021/wikikg90m/#dataset
https://ogb.stanford.edu/kddcup2021/wikikg90m/#dataset
https://github.com/quiver-team/torch-quiver
https://github.com/quiver-team/torch-quiver
https://nvidia-merlin.github.io/HugeCTR/sparse_operation_kit/master/intro_link.html
https://nvidia-merlin.github.io/HugeCTR/sparse_operation_kit/master/intro_link.html
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://github.com/NVIDIA/HugeCTR
https://github.com/NVIDIA/HugeCTR

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Minhui Xie, Shaoxun Zeng, Hao Guo, Shiwei Gao, & Youyou Lu

[14] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, JasonWeston,
and Oksana Yakhnenko. Translating Embeddings for Modeling Multi-
relational Data. NeurIPS’13: Advances in Neural Information Processing

Systems, 26, 2013.
[15] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, JasonWeston,

and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th International Conference

on Neural Information Processing Systems - Volume 2, NIPS’13, page
2787–2795, Red Hook, NY, USA, 2013. Curran Associates Inc.

[16] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. Wide & Deep Learning for Recommender Sys-
tems. In DLRS’16: Proceedings of the 1st Workshop on Deep Learning

for Recommender Systems, pages 7–10, Boston, MA, 2016. ACM.
[17] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf

Schuster. Fine-tuning giant neural networks on commodity hardware
with automatic pipeline model parallelism. In 2021 USENIX Annual

Technical Conference (USENIX ATC 21), pages 381–396, 2021.
[18] Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and

Jiwu Shu. Mobius: Fine Tuning Large-scale Models on Commodity
GPU Servers. In ASPLOS’23: Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 489–501, Vancouver, Canada, 2023.
[19] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang

He. DeepFM: A Factorization-machine Based Neural Network for
CTR Prediction. In IJCAI’17: Proceedings of the 26th International

Joint Conference on Artificial Intelligence, page 1725–1731, Melbourne,
Australia, 2017. AAAI Press.

[20] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel,
K. Hazelwood, M. Hempstead, B. Jia, H. S. Lee, A. Malevich, D. Mudi-
gere, M. Smelyanskiy, L. Xiong, and X. Zhang. The Architectural
Implications of Facebook’s DNN-based Personalized Recommenda-
tion. In HPCA’20: IEEE International Symposium on High Performance

Computer Architecture, pages 488–501, San Diego, CA, Feb 2020.
[21] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Represen-

tation Learning on Large Graphs. NeurIPS’17: Advances in Neural

Information Processing Systems, 30, 2017.
[22] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B Preußer, Kai Zeng,

Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou,
et al. MicroRec: Efficient Recommendation Inference by Hardware and
Data Structure Solutions. MLSys’21: Proceedings of Machine Learning

and Systems, 3, 2021.
[23] Wenqi Jiang, ZhenhaoHe, Shuai Zhang, Kai Zeng, Liang Feng, Jiansong

Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, Ce Zhang, et al. FleetRec:
Large-scale Recommendation Inference on Hybrid GPU-FPGA Clus-
ters. In KDD’21: Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, pages 3097–3105, Virtual Event,
2021.

[24] Seyed Mehran Kazemi and David Poole. Simple embedding for link
prediction in knowledge graphs. Advances in neural information pro-

cessing systems, 31, 2018.
[25] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark

Hempstead, Brandon Reagen, Xuan Zhang, David Brooks, Vikas Chan-
dra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-
Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Nau-
mov, Martin Schatz, Mikhail Smelyanskiy, and Xiaodong Wang. Rec-
NMP: Accelerating Personalized Recommendation with Near-Memory
Processing. arXiv:1912.12953 [cs], December 2019.

[26] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Hadidi, and Hye-
soon Kim. Batch-aware unified memory management in gpus for
irregular workloads. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 1357–1370, 2020.
[27] Thomas N Kipf and Max Welling. Semi-supervised Classification with

Graph Convolutional Networks, 2017.

[28] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R
Tallent, and Kevin J Barker. Evaluating modern GPU interconnect:
PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect. TPDS’19: IEEE

Transactions on Parallel and Distributed Systems, 31(1):94–110, 2019.
[29] Youjie Li, Amar Phanishayee, Derek Murray, Jakub Tarnawski, and

Nam Sung Kim. Harmony: Overcoming the hurdles of gpu memory ca-
pacity to train massive dnn models on commodity servers. Proceedings
of the VLDB Endowment, 15(11):2747–2760, 2022.

[30] Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He,
Yanghua Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong
Guo. BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O
and Preprocessing. In NSDI’23: 20th USENIX Symposium on Networked

Systems Design and Implementation, pages 103–118, Boston, MA, 2023.
[31] Kaihao Ma, Xiao Yan, Zhenkun Cai, Yuzhen Huang, Yidi Wu, and

James Cheng. FEC: Efficient Deep Recommendation Model Training
with Flexible Embedding Communication. SIGMOD’23: Proceedings of

the ACM on Management of Data, 1(2):1–21, 2023.
[32] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang,

Yangyu Tao, and Bin Cui. HET: Scaling out Huge Embedding Model
Training via Cache-enabled Distributed Framework. VLDB’22: Proc.
VLDB Endow., 15(2):312–320, 2022.

[33] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun
Xiong, Eiman Ebrahimi, Deming Chen, and Wen-mei Hwu. Large
Graph Convolutional Network Training with GPU-oriented Data Com-
munication Architecture, 2021.

[34] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beom-
seok Nam. Write-optimized Dynamic Hashing for Persistent Memory.
In FAST’19: 17th USENIX Conference on File and Storage Technologies,
pages 31–44, Boston, MA, February 2019.

[35] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. Deep Learning Recommendation Model for Personaliza-
tion and Recommendation Systems, 2019.

[36] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline
Trippel, and Carole-Jean Wu. RecShard: Statistical Feature-based
Memory Optimization for Industry-scale Neural Recommendation.
In ASPLOS’22: Proceedings of the 27th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, pages 344–358, Lausanne, Switzerland, 2022.
[37] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,

Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
FlexGen: High-throughput Generative Inference of Large Language
Models with a Single GPU. In International Conference on Machine

Learning, pages 31094–31116, New Orleans, LA, 2023. PMLR.
[38] Xiaoniu Song, Yiwen Zhang, Rong Chen, and Haibo Chen. UGache: A

Unified GPU Cache for Embedding-based Deep Learning. In SOSP’23:

Proceedings of the 29th Symposium on Operating Systems Principles,
pages 627–641, Banff, Canada, 2023.

[39] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. PowerInfer: Fast
Large Language Model Serving with a Consumer-grade GPU, 2023.

[40] Wenbo Su, Yuanxing Zhang, Yufeng Cai, Kaixu Ren, Pengjie Wang,
Huimin Yi, Yue Song, Jing Chen, Hongbo Deng, Jian Xu, et al. GBA:
A Tuning-free Approach To Switch Between Synchronous and Asyn-
chronous Training for Recommendation Models. NeurIPS’22: Advances
in Neural Information Processing Systems, 35:29525–29537, 2022.

[41] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate:
Knowledge Graph Embedding by Relational Rotation in Complex
Space, 2019.

[42] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex Embeddings for Simple Link Prediction.

Frugal: Efficient and Economic Embedding Model Training with Commodity GPUs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

In ICML’16: International conference on machine learning, pages 2071–
2080, New York, NY, 2016. PMLR.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph Attention Networks,
2018.

[44] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & Cross
Network for Ad Click Predictions. In Proceedings of the ADKDD’17,
pages 1–7. 2017.

[45] Yingcan Wei, Matthias Langer, Fan Yu, Minseok Lee, Jie Liu, Ji Shi,
and Zehuan Wang. A GPU-specialized Inference Parameter Server for
Large-scale Deep Recommendation Models. In RecSys’22: Proceedings

of the 16th ACM Conference on Recommender Systems, pages 408–419,
Seattle, WA, 2022.

[46] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian Gao, Kai Ren,
and Jiwu Shu. Fleche: An Efficient GPU Embedding Cache for Person-
alized Recommendations. In EuroSys’22: Proceedings of the Seventeenth

European Conference on Computer Systems, pages 402–416, Rennes,
France, 2022.

[47] Minhui Xie, Youyou Lu, Qing Wang, Yangyang Feng, Jiaqiang Liu, Kai
Ren, and Jiwu Shu. PetPS: Supporting Huge Embedding Models with
Persistent Memory. VLDB’23: Proceedings of the VLDB Endowment,
16(5):1013–1022, 2023.

[48] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, Bihai
Wu, Jiazhen Lin, Hongbo Ao, Wanhong Xu, and Jiwu Shu. Kraken:
Memory-efficient Continual Learning for Large-scale Real-time Rec-
ommendations. In SC’20: International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pages 1–17, Vir-
tual Event, 2020. IEEE.

[49] Eric P Xing, Qirong Ho, Wei Dai, Jin-Kyu Kim, Jinliang Wei, Seunghak
Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu.
Petuum: A New Platform for Distributed Machine Learning on Big
Data. In KDD’15: Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1335–1344,

Sydney, Australia, 2015.
[50] Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.

Embedding Entities and Relations for Learning and Inference in Knowl-
edge Bases, 2015.

[51] Dongxu Yang, Junhong Liu, Jiaxing Qi, and Junjie Lai. Wholegraph:
A Fast Graph Neural Network Training Framework with Multi-GPU
Distributed Shared Memory Architecture. In SC’22: International Con-

ference for High Performance Computing, Networking, Storage and Anal-

ysis, pages 1–14, New Orleans, LA, 2022. IEEE.
[52] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong

Chen, Wenyuan Yu, and Jingren Zhou. GNNLab: a Factored System for
Sample-based GNN Training Over GPUs. In EuroSys’22: Proceedings

of the Seventeenth European Conference on Computer Systems, pages
417–434, Rennes, France, 2022.

[53] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Ming-
ming Sun, and Ping Li. Distributed Hierarchical GPU Parameter Server
for Massive Scale Deep Learning Ads Systems. MLSys’20: Proceedings

of Machine Learning and Systems, 2:412–428, 2020.
[54] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong,

Hao Xiong, Zheng Zhang, and George Karypis. DGL-KE: Training
Knowledge Graph Embeddings At Scale. In SIGIR’20: Proceedings of the

43rd International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 739–748, Xi’an, China, 2020.
[55] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou,

Xiaoqiang Zhu, and Kun Gai. Deep Interest Evolution Network for
Click-through Rate Prediction. In AAAI’19: Proceedings of the AAAI

conference on artificial intelligence, volume 33, pages 5941–5948, Hon-
olulu, HI, 2019.

[56] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao
Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. Deep Interest
Network for Click-through Rate Prediction. In KDD’18: Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pages 1059–1068, London, UK, 2018. ACM.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Embedding Model
	2.2 Commodity GPU
	2.3 Unified Virtual Addressing (UVA)
	2.4 Motivation

	3 Design & Implementation
	3.1 Key Idea
	3.2 Frugal Overview
	3.3 Priority-based Proactively Flushing (P2F) Algorithm
	3.4 Parallel Flushing

	4 Evaluation
	4.1 Experimental Setup
	4.2 Microbenchmark
	4.3 Techniques
	4.4 Overall Performance
	4.5 Cost Efficiency of Frugal
	4.6 Sensitivity Analysis

	5 Related Work
	6 Conclusion
	References

