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Abstract
Deep learning recommendationmodels (DLRMs) have gained
widespread application across search, advertising, and e-
commerce. Still, DLRMs present notable challenges as they
depend heavily on large embedding tables to represent sparse
features in recommendation systems. This raises concerns
about both memory capacity and cost. Solid-state drives
(SSDs) offer a cost-effective solution with a significantly
larger capacity, but they introduce read amplification issues
because of the mismatch between embedding size and SSD
read granularity. Prior SSD embedding storage systems aim
to tackle these challenges by employing hypergraph par-
titioning to co-locate co-appearing embeddings onto the
same SSD page, alleviating read amplification. However, this
approach has a drawback as it divides embeddings into com-
pletely disjoint clusters, limiting potential combinations be-
tween embeddings.
In response to this limitation, we introduce MaxEmbed.

Capitalizing on the extensive storage capacity of SSDs,Max-
Embed effectively mines relationships between storage com-
binations of embeddings with replication, thereby enhancing
the effective bandwidth of SSDs. Additionally,MaxEmbed
incorporates a corresponding online service module for em-
bedding query request handling, leveraging two key opti-
mizations to reduce the overhead brought by replication.
Our evaluations demonstrate that MaxEmbed boosts SSD
embedding serving throughput by up to 18.7% under various
settings.

CCS Concepts: • Information systems→ Information stor-
age systems.

Keywords: Embedding models, SSD, Data placement, Data
replication
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1 Introduction
Deep learning recommendation models (DLRMs) [29] find
extensive applications in various domains, including search,
advertising, and e-commerce [16, 42, 45]. DLRMs depend
heavily on large embedding parameters to capture unique ob-
ject characteristics. However, the rapid expansion in model
size — growing tenfold annually — contrasts starkly with the
slower growth of memory capacity [14, 15, 26, 39]. In this
context, solid-state drives (SSDs) offer a cost-effective solu-
tion with superior storage capacity compared to traditional
memory, making them increasingly vital for storing DLRM
embeddings [21, 35, 37, 38, 41].
However, utilizing SSDs for storing model parameters

introduces a notable challenge. SSDs have a fixed page gran-
ularity, typically 4KB, while embedding parameters are much
smaller, ranging from 64 to 512 bytes [28, 30]. When reading
an embedding, the whole 4KB page needs to be read from
SSD, which causes read amplification in SSDs. It restrains
the effective bandwidth and thus degrades the whole system
throughput.
To mitigate read amplification, a prior study tries to co-

locate those embeddings that commonly appear together on
one SSD page [11], thus serving more embeddings per SSD
page read. It employs hypergraph partitioning to identify
commonly co-occurring embeddings to guide the embedding
placement. Although it alleviates the phenomenon of reading
amplification, the effective bandwidth of SSD is still very
limited, only about 8.58% in our evaluation.

With deep analysis, we find that the number of naturally
co-appearing embeddings often surpasses an SSD page’s stor-
age capacity. This intrinsically prohibits the aggregation of
these embeddings. Some of those embeddings are destined to
be scattered into different SSD pages if there is only one copy
of each embedding, which will continue to constrain SSD
bandwidth utilization. This indicates that simply rearranging
the embedding placement is not enough.
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To overcome these limitations, we introduceMaxEmbed,
an SSD-based solution for embedding storage and retrieval.
MaxEmbed aims to exploit more co-appear patterns by selec-
tively replicating embeddings. It leverages the vast space of
SSD for additional replicas of embedding to store more possi-
ble combinations between embeddings.MaxEmbed contains
offline and online two phases. These two phases focus on how
to make a replication and handle embedding query requests
in a replica scenario, respectively. The offline phase of Max-
Embed processes the embedding placement. We propose a
replica strategy based on hypergraph partition. Leveraging
the connectivity and co-appearance information, it wisely
replicates and places the embeddings to exploit the benefits
of extra storage space. The online phase of MaxEmbed fo-
cuses on selecting proper replicas to read for online serving.
With the introduction of replicas, selecting the minimum
number of pages to read is NP-hard, and greedy approxima-
tion incurs non-negligible overheads. MaxEmbed addresses
this by combining a pipeline strategy to offset software over-
head with SSD read latency and employing an index limit to
reduce this overhead further.

We evaluateMaxEmbed on five real-world datasets with
two types of SSDs, and the results demonstrate that using
only 10% additional embedding storage space,MaxEmbed
can improve the SSD effective bandwidth by 2% - 10.0% com-
pared with the baseline embedding placement and achieve
1.7% − 8.8% end-to-end throughput improvement than prior
embedding placement strategy. When the replication ratio
comes to 80%, the effective bandwidth improves by 7% - 19.0%,
and end-to-end throughput improves by 8.9% − 18.7%.
We summarize the contribution of this paper as follows:
• We identify the inherent defect of the existing em-
bedding placement strategy and the opportunities of
using replication for embedding storage and retrieval
to enhance the bandwidth utilization of SSDs.

• We propose MaxEmbed, an SSD-based solution for
embedding storage and retrieval, to overcome the limi-
tations when using hypergraph partition in embedding
placement and to reduce the overhead when process-
ing online query serving with replication.

• We evaluateMaxEmbed using five real-world datasets
and demonstrate the effective bandwidth of SSD when
usingMaxEmbed to perform embedding replication,
placement, and online serving.

2 Background
2.1 Deep learning recommendation models
Deep learning recommendation models (DLRMs) [29] find
widespread application in various scenarios, including search-
ing [16], e-commerce [44, 45], and advertising [31, 42]. Dif-
ferent from traditional deep learning scenarios like CV or
NLP, the input features in these scenarios are extremely
high-dimensional sparse IDs, e.g., user IDs, item IDs, and
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Figure 1. Basic structure of Deep Learning Recommen-
dation Model (DLRM) with SSD storage. The embedding
table occupies the vast majority of DLRM storage space. Stor-
ing it on SSD will bring the read amplification problem.

user-item cross IDs [13]. Due to the dimension disaster, tra-
ditional DNNs can not directly learn from high-dimensional
inputs. Thus, DLRMs leverage an embedding layer to map
high-dimensional sparse IDs to low-dimensional dense vec-
tors (called embedding vectors or embeddings in short). Specif-
ically, for each ID category, the model maintains a separate
hash table (called embedding table), where its keys are IDs
and its values are embedding vectors. Owing to the large
capacity of IDs in a feature category (billions-level [26, 39])
and the high number of feature categories (around several
hundred [3, 18]), the embedding layer contributes to up to
99.9% of the parameters of the whole model [12, 26].
Figure 1 shows the structure of a DLRM example. It first

uses the corresponding embedding tables to cast sparse in-
put features (𝑎𝑖 , 𝑏𝑖 ,𝑚𝑖 in the Figure) to embedding vectors.
Then, these vectors are fed into DNN [9, 25] to determine
the probability of a user clicking on or viewing a product.
In this system, the size of the embedding table accounts for
most of the entire model parameters.
DLRMs pose great pressure on the underlying storage

system. 1) Currently, the parameter capacity of modern DL-
RMs has surged to hundreds of trillions, reflecting an as-
tounding annual growth rate of 10 times over the past five
years [14, 15, 26, 39]. This exponential expansion has re-
sulted in significant increases in storage costs. 2) Looking
ahead, this trend is expected to persist and continue its up-
ward trajectory. As common wisdom in the ML community
is that more parameters tend to achieve better model perfor-
mance, ML engineers never stop exploring and exploiting
more complex models in pursuit of corresponding revenue
in model accuracy, e.g., with more complicated feature ac-
quisition [27], or special feature engineering techniques like
crossing [40]. These endeavors will lead to more parameters
with more significant access pressure.
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Figure 2. Existing system: hypergraph partition. Each
circle represents a vertex, and each colored region represents
a hyperedge. Each vertex will only be partitioned into one
cluster.

2.2 Using SSD to store embedding vectors
Historically, such large-scale DLRMs are stored inDRAM [29].
However, the growing trend of parameters makes this prac-
tice increasingly cost-inefficient, for the high cost of DRAM
medium and the sluggish growth rate in DRAM capacity.
Solid State Drives (SSDs) offer more cost-effective and ca-
pacious storage. With the help of new hardware medium
(like Optane [10]) and high-performance software protocols
(like Non-Volatile Memory Express, NVMe), off-the-shelf
SSDs can deliver over 7 GB/s bandwidth and 5 𝜇𝑠 I/O latency,
which shows great potential in storing large-scale DLRMs.

Despite these benefits, an inherent challenge emerges
when employing SSDs: the mismatch between the inner
granularity of SSDs and the access granularity of embed-
ding parameters, which leads to severe read amplification.
Specifically, SSD devices have a minimum read and write
granularity, as they internally store data at a page granular-
ity (a typical page size is 4KB). In contrast, typical embed-
ding parameters are relatively small, ranging from 64 to 512
bytes [28, 30]. This mismatch exhibits a pronounced read am-
plification phenomenon, limits the effective read bandwidth
of SSDs, and undermines the capacity advantages SSDs offer.

To handle this challenge, Bandana [11], a recent work pro-
posed by Meta, suggests that the placement of embedding
vectors in SSD should be carefully considered to reduce read
amplification. Specifically, it first analyzes the past access
patterns with the hypergraph partitioning technique and
finds embedding vectors that may be accessed simultane-
ously. Note that hypergraph is an extension of the traditional
graph, where an edge (called hyperedge) can connect more
than two vertices. As Figure 2 shows, to build the hypergraph,
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Figure 3. SSD effective bandwidth under vanilla and
SHP-partitioned embedding placement. Compared with
vanilla embedding placement, using SHP to guide the em-
bedding placement does improve the effective bandwidth.
But the effective bandwidth is still low.

Bandana maps all embeddings in the recommendation sys-
tem to vertices of a hypergraph, and treats the relationship in
an embedding read request as a hyperedge (which connects
all vertices corresponding to embeddings in this request).
To minimize the number of times the embedding query

reads SSD, that is, to reduce the number of connected clusters
on the hyperedge in the above hypergraph, which is consis-
tent with the goal of the hypergraph partitioning connec-
tivity optimization problem. Then, Bandana uses the Social
Hash Partition (SHP) [20] algorithm for hypergraph parti-
tioning. Hypergraph partitioning can divide the vertices into
a specified number of clusters so that the number of vertices
in them is balanced. Bandana believes the vertices in each
cluster obtained by hypergraph partition often co-appear.
Guided by these co-appearing patterns, Bandana strives to
co-locate the related embedding vectors within the same
SSD page. This strategic arrangement allows a single read
operation to fetch more effective embeddings, enhancing the
overall effective read bandwidth.

3 Motivation
Our observation. Figure 3 shows the effective SSD read
bandwidth of vanilla placement (sequentially arranged one
by one) and the state-of-the-art placement solution (SHP,
hypergraph partition algorithm used by Bandana) across
four datasets; refer to §8.1 for detailed experimental settings.
From the results, we observe that although the effective
bandwidth is greatly improved in Bandana (improved by
1.1 × −2.2×), it is still significantly below the bandwidth cap
of SSD (e.g., utilizing only 8.58% in the Criteo dataset). Hence,
the severity of read amplification still persists.
With deep analysis, we find that the inherent defect of

hypergraph partition algorithms causes this extreme under-
utilization of bandwidth: the optimization goal of partition
algorithms is to maximize the opportunity of co-appearance
within one SSD page. Thus, any vertex in the hypergraph will
be partitioned into only one cluster, as shown in Figure 2,
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which only captures a limited number of co-appearance rela-
tionships (e.g., in Figure 2, vertex 1 is partitioned into cluster
3, causing the combination relationship between vertices
⟨1, 2, 3, 4⟩ to be destroyed). However, in real-world work-
loads, an embedding can easily co-appear with more em-
beddings than an SSD page can hold (e.g., in the CriteoTB
dataset, the top 5% of the hottest embeddings are likely to
co-appear with more than 40 embeddings, but the number of
embeddings that can be stored within an SSD page, typically
8 to 32).
This mismatch means an embedding vector is adjacent

to many vertices in a hypergraph but stored nearby with
only a small part of them. Consequently, when embeddings
that are not co-located are queried simultaneously, it results
in multiple SSD read operations. This severely restricts the
effective read bandwidth of SSDs. It indicates the insuffi-
ciency of merely rearranging the placement of embeddings.
To overcome this limitation, we need to find more potential
combinations between embeddings.

Key idea. Based on the analysis above, we aim to exploit
more co-appear patterns by selectively replicating embeddings.
Specifically, by carefully trading off the potential benefits and
space overhead (under a predetermined space amplification
ratio 𝑟 ), we selectively replicate some hotspot embeddings to
multiple pages of SSD to capture more co-appearing patterns
and finally boost the effective bandwidth of SSDs. For exam-
ple, in Figure 2, by replicating embedding 6 to both cluster 1
and 2, we can simultaneously alleviate reading amplification
when queried with ⟨6, 7, 8⟩ and ⟨5, 6⟩.

Making replication will also lead to additional storage
space. Given the ample storage capacity of SSDs, which can
extend to several terabytes, there is enough room to allo-
cate additional space for storing more combinations of these
replicas.

Through replication, we hope to capture possible combina-
tions that are not included in the hypergraph partition results.
Therefore, more embeddings that are easily queried together
can be stored on the same SSD page, which is expected to
reduce SSD read operations, mitigate the read amplification
phenomenon, and finally enhance the effective bandwidth of
SSD read operations. Although the concept is clear, making
such a replication is challenging.
Challenge #1: embedding placement with replica-

tion. Themain design challenge is the embedding placement,
which we define as max-bandwidth embedding placement
with replication problem (Rep-MBEP). In Rep-MBEP, 𝑁 em-
beddings (vertices) and 𝐸 queries (hyperedges) are given. We
need to find an embedding placement on SSD where each
page (cluster) contains at most 𝑑 embeddings. In addition,
some embeddings could be placed on multiple pages while
following the constraint that the proportion of replicas must
not exceed 𝑟 (replication ratio). The objective is to minimize
the number of SSD pages each query needs to find all its
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Figure 4.MaxEmbed overview.

embeddings. Primarily, Rep-MBEP can be reducible to max-
bandwidth embedding placement problem (MBEP) when
𝑟 = 0, while MBEP itself, which equals to the hypergraph
partition problem, is an NP-hard problem [24] and existing
placement algorithms [7, 20, 32] all use some heuristics to
solve it. Thus, Rep-MBEP is also NP-hard, and developing
an embedding placement in the Rep-MBEP scenario will be
even more difficult.
Challenge #2: page selection when online serving.

Since the replication results in potentially many SSD pages
containing the same embedding, a subsequent design chal-
lenge emerges when online serving is the page selection
algorithm to identify a minimal SSD page set that covers
all embeddings in a given request. This is difficult since an
online query may contain tens of embeddings, multiplying
its enumeration complexity. This predicament is equivalent
to the set cover optimization problem, also a well-known
NP-hard challenge. Opting for an aggressive approach to se-
lect replicas may introduce considerable software overhead,
substantially increasing latency. This latency spike could
potentially negate the advantage of reduced page read count
by embedding placement.

4 MaxEmbed Overview
Based on the above analysis, we presentMaxEmbed, an SSD
embedding storage solution aiming to improve the effective
bandwidth of SSD through replicas and alleviate the problem
of read replica selection. MaxEmbed comprises two primary
components, as illustrated in Figure 4.
Offline phase: partitioning and replication. In the

offline phase, MaxEmbed primarily mitigates the problem
of Rep-MBEP. The input for this offline component includes
a sequence of logs containing historical logs, replica ratios,
and cluster sizes. MaxEmbed utilizes these logs to construct
a hypergraph, performs partitioning and replication, and
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subsequently generates a set of mappings for each embed-
ding key to its corresponding storage page locations on the
SSD.
Online phase: query request processing. The online

phase of MaxEmbed is primarily dedicated to serving incom-
ing queries for embedding lookup. In this phase,MaxEmbed
leverages the partitioned mapping information from the of-
fline phase to serve online query requests. From the partition
information, MaxEmbed will build a Forward Index (map of
embedding to SSD storage position) and an Invert Index (map
of each SSD page to embeddings it contains). MaxEmbed
divides the incoming parameter query requests based on a
replica selection strategy according to the Forward Index
and the Invert Index. Additionally,MaxEmbed adopts two
optimization methods to reduce the query process overhead.

5 Offline Phase: Partitioning and
Replication

The objective of Rep-MBEP is to selectively replicate a subset
of the entire embedding vectors at a predetermined replica-
tion ratio 𝑟 and strategically make embedding placement to
maximize the effective bandwidth of the SSD. As analyzed
in §3, the reason for the insufficient effective bandwidth of
SSD is that only a small amount of valid embeddings can
be obtained in a single read operation caused by limited
embedding combinations. Therefore, we aim to introduce
vertex replicas into the hypergraph to explore a wider range
of embedding parameter combinations.

In order to perform replication operations, two problems
must be addressed: 1) which vertices should be replicated,
and 2) how should the replicas be placed? Building upon
the existing hypergraph partitioning algorithm, we have
two options: 1) replication prior to partitioning, leveraging
the hypergraph partition algorithm to decide the placement
of replicas. 2) First partition, then replication, determining
which embeddings need to be replicated based on the results
of the hypergraph partition. We have developed three repli-
cation strategies. Each strategy has been analyzed, allowing
us to understand their advantages and disadvantages.

5.1 Strawman 1: Replication prior to partition (RPP)

As hot embeddings tend to co-appear withmore other embed-
dings, making replicas of these vertices increases the proba-
bility that they will co-occur with other neighbor vertices. As
shown in Figure 5 (a), a direct way to make replication is to
generate replicas of the first 𝑟 proportion of vertices accord-
ing to their popularity and connect these replicas with the
hyperedges. All these replicas are treated as regular vertices
and put all these vertices into the partition algorithm. This
leaves the embedding placement problem to the hypergraph
partition algorithm.
Poor performance improvements. However, as eval-

uated in §8.4, this method was not effective. This can be

attributed to two main factors. First, selecting replicas de-
pends entirely on hotspot information. As a result, vertices
chosen based on hotspots may not have necessary adjacent
relations, and the replicas could offer limited advantages
(e.g., as in Figure 5 (a), cold vertex like vertex 4 would not
be replicated, but replicating vertex and co-locating it with
vertices ⟨1, 2, 3⟩ will be better.) Unfortunately, predicting
potential combinations between vertices is difficult before
hypergraph partitioning. Second, it is hard to prevent dupli-
cated combinations from being created using this method,
causing storage space wasted.

5.2 Strawman 2: Finer-partition and fill with
replication (FPR)

As a vertex can be placed into only one cluster during the hy-
pergraph partition, the possible combinations of the adjacent
vertices will be limited. A way to alleviate this is to scan each
cluster to find the most common co-appeared vertices in all
clusters and add these vertices as replicas into the cluster.
However, the number of vertices that can be placed in each
cluster is limited, so it can be considered to divide the cluster
into smaller ones and then create replicas through the above
method. When a replication ratio 𝑟 is set, (1+𝑟 )𝑁 /𝑑 clusters,
each containing 𝑑 embeddings, will be generated. As shown
in Figure 5 (b), the hypergraph is directly partitioned into
(1 + 𝑟 )𝑁 /𝑑 clusters to get smaller clusters. The number of
vertex in each cluster is less than 𝑑 . We count the vertices
with the most common occurrences of vertices in each clus-
ter to identify adjacent vertices to make replicas to populate
the cluster.

Instability of thismethod.We also evaluate this method
in §8.4. Results show that the performance of this method is
not stable, and sometimes, it is evenworse thanwithout repli-
cas in certain datasets. The main drawback of this method is
that the hypergraph is partitioned into finer clusters, which
may destroy the original embedding combination (e.g., as
shown in Figure 5 (b), vertices ⟨1, 2, 3, 4⟩ are separated in this
example).

5.3 Solution: Connectivity-priority replication
From §5.1, it’s evident that creating replicas before parti-
tioning ignores the relationships between vertices and the
information of the hypergraph, resulting in an unsatisfactory
result. Thus, it’s more effective to replicate after partitioning.
Additionally, as §5.2 highlights, finer partitioning destroys
vertices association, thus leading to a worse partition. It’s cru-
cial to preserve the original hypergraph partitioning result
before initiating replication.
Vertices that need to be replicated are those in a hyper-

edge with high connectivity. Here, if the vertices in a hy-
peredge are distributed in 𝜆 clusters, the connectivity of the
hyperedge is 𝜆. We treat each query as a hyperedge, so the
connectivity of a hyperedge equals the read operation count
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Figure 5. Three replication strategies. (a) RPP method: making replication based on hotness of vertices before partition,
leveraging hypergraph partition to decide the placement. (b) FPR method: partition the origin hypergraph into finer clusters
and fill each cluster with replication. (c)MaxEmbed solution: partition the hypergraph as there’s no replication, then make
replication based on the connectivity of the hyperedge and partition result.

of a query. Based on this, we calculate a score for each vertex
by the following equation:

𝑠𝑐𝑜𝑟𝑒 (𝑣𝑖 ) =
∑︁

𝑗∈𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒 (𝑣𝑖 )
(𝜆( 𝑗) − 1)

where 𝑣𝑖 represent a vertex, 𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒 (𝑣𝑖 ) is the set of
hyperedges connect to vertex 𝑣𝑖 , 𝜆( 𝑗) represents the connec-
tivity of hyperedge 𝑗 .

This equation considers both the contribution of vertices
to the connectivity in hyperedges and the hotness of the
embedding vertices. Vertices with higher scores indicate
more connected clusters linked by their adjacent hyperedges
and appear more frequently.
Identifying which vertices to replicate is a critical yet in-

sufficient step. High-scoring vertices might not have strong
relationships with each other, and their combination could
fail to bring significant benefits. To address this challenge,
we incorporate the hypergraph partition results and the co-
appearance information of the chosen vertices into the repli-
cation process. For vertices with higher scores, we examine
the frequency of other vertices appearing alongside them
in a hyperedge. When forming a replica cluster, we select a
high-scored vertex as a base, assess the co-occurrence fre-
quency of other vertices with the base, and aggregate them.
This approach mitigates the issues of the weak correlation of

vertices in selecting vertex and making replication, thereby
improving the overall effectiveness of the replication process.

Our replication algorithm consists of the following steps:
1. Partition the hypergraph using vanilla SHP algorithm.
2. Calculate the score for each vertex (using equation(1)).
3. Select top 𝑟𝑁 /𝑑 scored vertices (with 𝑑 representing the

embedding count a cluster can accommodate).
4. For each selected vertex, find the most frequent (𝑑 − 1)

neighbors by traversing the hyperedges connecting to
it (excluding vertex that has been assigned to the same
cluster in the first step) and create a replica cluster for
these vertices.
Adding replicas after partition retains the result of the

original hypergraph partition, which ensures that the repli-
cation operation will not damage the existing combination
relationship. In selecting vertices for replication, we consider
a vertex’s contributions to hyperedge connectivity and its
significance (hotness) and extend replication to vertices ad-
jacent to the selected ones. This approach prevents issues
related to weak correlations between selected vertices. By
replicating these selected vertices and their adjacent coun-
terparts, we can effectively diminish edge connectivity, con-
tributing to a more streamlined and optimized system.
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6 Online Phase: Query Request Processing
After partition and replication, we obtained the placement
of the embeddings. Since one embedding may be stored in
multiple SSD pages, MaxEmbed faces the page selection
problem, i.e., choosing which pages to read to minimize the
whole read operation count. This is known as the set cover
optimization problem, a classic NP-hard problem [6].
Most current approximation algorithms for the set cover

problem rely on greedy approaches.MaxEmbed leverages
a well-known and near-optimal greedy algorithm [19, 34].
Specifically, in each step, it selects the embedding page that
can serve the most requests until all the requests are covered.
To achieve this, it iterates all the embedding pages, intersect-
ing themwith the current request set. Therefore, it has a high
complexity (in worst case𝑂 ( |𝑆 | · |𝑄 |) set operations, where𝑄
means the query set and S contains all the possible sets that
can be selected), adding severe computing overhead. In our
evaluation, the procedure of greedy selection accounts for
over 56% of the end-to-end latency, even more than reading
SSD itself.

However, we find that this procedure can be optimized be-
cause of the following two key observations in our scenario.
1) Replicated, hot embeddings are likely to co-locate with
non-replicated, cold embeddings, thus hitchhiking on their
only candidate page. 2) The page selection process can be
pipelined with SSD reads, hiding the computing overhead.

6.1 One pass selection algorithm
With the first observation, we modify the algorithm above,
as depicted in Figure 6.

Two indexes should be initialized for 𝑂 (1) embedding-to-
pages and page-to-embeddings mapping. The Forward Index
stores the SSD pages each embedding is in, and the Invert
Index stores the embedding keys each SSD page contains.

To iterate the embeddings with fewer replicas first, ❶ we
sort the embedding keys in ascending order based on their
replica counts. After that, each key (which has not been
removed) is iterated. ❷ Select the SSD pages that contain the
target key using the Forward Index. Then, ❸ find the page
that covers the most queried embeddings with the Invert
Index. Finally, we remove the covered keys from the query
and ❹ issue an SSD page read operation.
As embeddings with fewer replicas are first iterated, the

computing overhead will be much lower, and embeddings
with more replicas are likely to be read together with pre-
ceding embeddings, eliminating high access overheads. In
addition, it reduces the complexity to 𝑂 ( |𝑆 | + |𝑄 |) set opera-
tions for each query due to the fact that each SSD page will
be enumerated 𝑂 (1) times. (See §7.2 for more discussions.)

Index shrinking. If highly-replicated embeddings are un-
fortunately not covered by the read of previous low-replicated
embeddings, they may cause high computing overhead in
❸, since this often results in the searching of hundreds of
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Figure 6. Replica selection and SSD read pipeline. Take
the selection of embedding 5 (E5) as an example: ❶ All
queried embeddings are sorted by their replica count from
low to high. ❷ From the Forward index, E5 exists in page𝐶2
and 𝐶5. ❸ Match the Invert Index of 𝐶2 and 𝐶5 and find 𝐶5
covers the most embeddings in the rest of the query (E1, E5).
❹ Issue SSD request of 𝐶5.

clusters on the Invert Index. To address this, we further pro-
pose the index shrinking optimization to limit the number
of clusters for all embeddings in the Embedding Index. As
shown in Figure 7, in the index, we only store and enumerate
the first 𝑘 (noted as index limit, 𝑘 = 3 in this case) clusters
instead of all clusters. With index shrinking, we not only
reduce the size of the Embedding Index but also limit the
index searching overhead in ❸ to 𝑘 reads in the worst case.
Note that index shrinking has negligible impact on the SSD
effective bandwidth in practice since, at this point, most of
the co-appear patterns in this query have already been read.

6.2 Pipelined replica selection and SSD access
Despite the optimization above, the overhead is still consid-
erably high. However, as Figure 6 indicates, an SSD read is
independent of the subsequent page selections. Additionally,
we observe that replica selection and SSD read two proce-
dures have comparable order of magnitude of latency (§8.4).
These insights enable us to leverage the pipeline technique
to further hide the software overhead. Specifically, after se-
lecting the SSD page to read in each iteration, we issue an
asynchronous SSD read request and proceed with the fol-
lowing page selections. At the end of our algorithm, we poll
for all SSD reads to complete.
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Figure 7. Index shrinking. Although the index of vertex 3
has been shrunk, and there is no 𝐶1 in the index of vertex
3, due to the existence of the invert index when querying
vertices ⟨1, 3⟩, these two embeddings can still be obtained in
one read operation.

7 Overhead of MaxEmbed
7.1 Memory overhead
MaxEmbed has to maintain two DRAM-resident indexes,
which introduce additional storage overhead: 1) Embedding
index that maps each embedding vector to its positions in
SSD. This requires a space of 𝑂 ((1 + 𝑟 )𝑁 ), where 𝑟 is the
replication ratio. 2) Inverted index that maps each SSD page
to the embedding keys it contains. The mapping size equals
the SSD page count, a linear relationship with the total num-
ber of embeddings. It is 𝑂 ((1 + 𝑟 )𝑁 ). Since the replication
ratio is usually a tiny constant, it can be considered the same
magnitude as 𝑂 (1). The total space overhead is 𝑂 (𝑁 ).

7.2 Time overhead
Offline partition cost. Let 𝑁 be the number of vertices, 𝐸
be the number of edges, 𝑟 be the replication ratio, and 𝑑 be
the embedding count an SSD page holds (determined by the
SSD page size and the embedding dimension). The time cost
of the offline process contains two parts: 1) partitioning a
hypergraph using SHP, which incurs a time complexity of
𝑂 (𝐸 log𝐵) [20], with 𝐵 = 𝑁 /𝑑 representing the total num-
ber of partitions. As 𝑑 can be considered as a constant, the
complexity can be simplified as 𝑂 (𝐸 log𝑁 ). 2) The repli-
cation procedure requires 𝑂 (𝑟𝑁𝐸) time cost, as it iterates
𝑟𝑁 /𝑑 = 𝑂 (𝑟𝑁 ) rounds, with each round enumerating 𝑂 (𝐸)
edges in the worst case.

The original SHP implementationwas designed onHadoop.
Both this algorithm and our extension to this algorithm can
be seamlessly transformed into a map-reduce program, al-
lowing for straightforward parallelization, which will signif-
icantly reduce the time cost. Since hypergraph partitioning
is offline, the time overhead is acceptable.

Table 1 shows the partition time (with a replication ratio
of 10%) in Criteo and CriteoTB datasets.

Table 1. Partition time of real-world datasets.

Dataset 16 in a part 32 in a part 64 in a part

Criteo 5 min 4.9 min 4.8 min
CriteoTB 3 hour 2.8 hour 2.7 hour

Online query process cost. Suppose a request contains
𝑞 embedding keys. According to §6, the time overhead of
online processing consists of two parts: 1) sort the request in
replica count ascendant order. The complexity of the sort is
𝑂 (𝑞 log𝑞). 2) Match all SSD pages corresponding to embed-
ding keys and select a page that covers the maximum number
of elements in the current request. With the aforementioned
optimization, the complexity of this process becomes 𝑂 (𝑘𝑞),
where 𝑘 represents the index limit of the Embedding Index.
Here, the index limit controls the upper bound of candidate
SSD pages to 𝑘𝑞, which gives a more precise complexity than
§6.1. This process can be pipelined with SSD read operations
to cover the overhead further. The total time complexity is
𝑂 (𝑞 log𝑞). We have examined the influence of 𝑘 on latency,
which is detailed in §8.4.

7.3 Total Cost of Ownership (TCO) of MaxEmbed
Themain cost of MaxEmbed comes from the additional space
of SSD. We use the price of AWS[1], Intel P5800X (Optane-
based) and Samsung PM 1735 (NAND-based) to estimate the
TCO of MaxEmbed. Taking the largest publicly available
dataset (CriteoTB) as an example, its embedding table size is
about 225 GB. At a replication ratio of 0.8×, the size is about
400 GB. A c6g.16xlarge instance costs $1,588 per month, an
800GB P5800X drive costs around $1,000 ($1.25/GB), and a
1.6TB PM1735 drive costs approximately $500 ($0.3125/GB).
The TCO estimation is shown in Table 2. The assumption is
PM 1735 gives the same perf as Intel Optane P5800X as it’s
not measured.

Table 2. TCO estimation of MaxEmbed.

Item Baseline
(SHP)

MaxEmbed
(with r=80%)

Total Cost (with P5800X) $1,869.25 $2,088.00
Total Cost (with PM1735) $1,658.31 $1,713.00

Performance 1× 1.16×
Performance/Cost (P5800X) 1× 1.04×
Performance/Cost (PM1735) 1× 1.12×
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8 Evaluation
8.1 Experiment setup
By default, we conducted all our experiments on a machine
with Intel(R) Xeon(R) GOLD 6530 CPU processor, 128GMem-
ory, and Intel Optane P5800X SSD. All evaluations were con-
ducted on Ubuntu 22.04 LTS. All SSD requests are issued
through the user space driver, SPDK[2]. We use CacheLib [5],
a high-performance concurrent cache proposed by Meta, as
DRAM cache to evaluate all our baseline and MaxEmbed.
CacheLib introduces very low memory overhead, making it
ideal for caching gigabytes of objects such as large embed-
ding tables, and previous DLRM-related research by Meta [4]
also use CacheLib as DRAM cache. We use CacheLib’s LRU
cache and the default insertion and eviction policy (upda-
teOnRead, but not updateOnWrite), which is a configuration
suitable for read-intensive workloads. Except for special in-
structions, the cache ratio is set to 10% in our evaluation.
Real-world datasets. To evaluate the effectiveness of

MaxEmbed, we use public datasets for the recommendation
systems: Amazon M2 [33], Criteo [17], Avazu [36], Alibaba-
iFashion [8], and CriteoTB [22] datasets, as detailed in Ta-
ble 3. Among these, Avazu, Criteo, and CriteoTB are datasets
used predominantly in advertising scenarios, while Alibaba-
iFashion and Amazon M2 are more pertinent to shopping
scenarios.

Table 3. Real-world Datasets information.

Dataset # of
Items

# of
Queries

Query
Len. Log Size

Amazon M2 1.39M 3.6M 5.24 0.26 GB
Alibaba-iFashion 4.46M 999K 53.63 1.4 GB
Avazu 9.45M 40.4M 21 5.3 GB
Criteo 35M 45.8M 26 9.5 GB
CriteoTB 882M 4.37B 26 1.1 TB

We set the default embedding vectors dimension to be 64
(256 bytes) and evaluate other embedding dimensions (from
32 to 128) in sensitive analysis §8.5.

8.2 Overall performance
Effective bandwidth improvement. Figure 8 shows SSD
effective bandwidth improvement of MaxEmbed across var-
ious replication ratios (0.1, 0.2, 0.4, 0.8) and datasets. The
term “SHP” represents the baseline metric. Each bar labeled
“ME(r=𝑥%)” demonstrates the effective bandwidth increment
whenMaxEmbed is applied for embedding placement with
an 𝑥% replication rate.
It’s noteworthy that the performance gains are particu-

larly pronounced in the context of shopping datasets, where
the co-appearance phenomenon is more prominent. This en-
hancement, however, is less significant in advertising datasets.
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Figure 10. Throughput of end-to-end evaluation.

This variance can also be attributed to dataset size. Larger
datasets provide more sample data for hypergraph partition-
ing and replica selection, enabling more precise embedding
placements.
Explore the valid embedding count in a read. We

leverage the Criteo dataset to examine how the replicas im-
pact effective read bandwidth.We useMaxEmbed to perform
partitioning and replication operations with a ratio of 10%
and count the average number of valid embedding counts
in a single read operation (without cache). As illustrated in
Figure 9, the situation where only one valid embedding is
obtained in a single read operation is significantly reduced,
and other situations where more valid embeddings are ob-
tained increase. The average valid embedding obtained by
each read operation increased from 3.59 to 4.79. This shift
results in a marked improvement in the efficiency of read
operations.
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End-to-end performance. Figure 10 shows the end-to-
end throughput results. The changes in end-to-end through-
put are slightly different from the changes in effective band-
width, mainly due to the different average request lengths
for different datasets. Putting multiple batches of queries si-
multaneously may cause duplication, and the effective band-
width and throughput after deduplication are not necessarily
proportional. The throughput improves 1.7%-8.88% across
the datasets in a 10% replication ratio and reaches 8.9% -
18.7% when the replication ratio increases to 80% compared
to the baseline.
Figure 11 shows the end-to-end latency results. After

adding replicas, we can read fewer SSD pages with one query,
which reduces the end-to-end performance’s read latency.
Since the number of times a single embedding query needs
to read the SSD is reduced, the latency is also significantly re-
duced. With a replication ratio of 10%, the end-to-end latency
is reduced by 2%-7.4%. When the replication ratio comes to
80%, the latency is reduced by 10%-14.8%.

8.3 Performance under different cache ratios
Figure 12 shows the end-to-end throughput under different
cache ratios. We set the cache size to 1−40% of the whole em-
bedding table size. We can observe that: 1) as the cache size
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Figure 13. Throughput of end-to-end evaluation with-
out cache.

increases, the throughput of different configurations grad-
ually increases and eventually remains stable. 2) In all the
evaluated datasets,MaxEmbed can bring up to 1.2× through-
put improvement under different cache ratios. This is due
to the fact that even though the cache absorbs access to hot
embeddings, MaxEmbed can still utilize the combination
relationship of cold embeddings to reduce read amplification
of SSDs. 3) Since the combination relationships of different
datasets contain different numbers of hotspots, the perfor-
mance improvement thatMaxEmbed can achieve varies with
different caching ratios. For example, in CriteoTB, the com-
bination relationships are colder in comparison with other
datasets, soMaxEmbed is less sensitive to the cache size, and
thus increasing 𝑟 can improve performance significantly.

Considering there are scenarios where using DRAM as an
embedding cache is impractical, such as near-data process-
ing [37, 41], we also benchmarkMaxEmbed without cache.
As shown in Figure 13, the performance of MaxEmbed is
more pronounced in this case, with just a small 𝑟 (e.g., 0.2),
MaxEmbed can improve the throughput by 1.08− 1.31×. We
also evaluate a pure DRAM system. Its throughput is 9-26 ×
of MaxEmbed (omitted in the figure).

8.4 Technique analysis
Comparison of different replication strategies. Figure 14
shows the bandwidth improvement of three algorithms men-
tioned in §5 on Alibaba-iFashion, Amazon M2, and Avazu
datasets (the performance of the three replication strategies
on the Criteo and CriteoTB datasets are similar to that on
Avazu). RPP can maintain a relatively stable increase in effec-
tive bandwidth, but the overall improvement is slight. The
main reason is that RPP performs replicas before the graph is
divided, and there may not necessarily be a combination re-
lationship between the selected replicas, resulting in wasted
space but no benefit.
The FPR does not perform stably on different datasets. It

can be found that FPR has achieved good results only on
the Amazon M2 dataset. However, it receives poor results
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Figure 17. Sensitivity analysis. (a) different embedding
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on other datasets and may even cause a decrease in effective
bandwidth. To understand the reason, we note that there is
an apparent difference in average request length between
Amazon M2 and other datasets. As mentioned in §5.2, finer
partitions may destroy the combination of embeddings. How-
ever, in the Amazon M2 dataset, the average request length
is shorter, causing smaller hyperedges. In this way, even if
the hypergraph is divided into thinner parts, it will not affect
the graph partition. Therefore, FPR performs well on this
particular dataset, but its performance on other datasets is
relatively poor.
MaxEmbed keeps a stable and relatively high improve-

ment of the effective bandwidth on all datasets. This is mainly
due toMaxEmbed taking into account the contribution of
a vertex to the number of hyperedge-connected blocks, its
popularity, and its neighboring vertices when making repli-
cation.

Time breakdown of an online query.
As mentioned in §6, online query processing with embed-

ding replication incurs significant overhead. We adopted the
pipeline and index shrinking to reduce the overhead. We
break down the MaxEmbed online procedure by running
with 8 threads to demonstrate the effectiveness of these op-
timizations. The partitioned Alibaba-iFashion dataset with
a 40% replication ratio is used. Figure 15 shows the latency
breakdown of the online processing procedure. After using
the pipeline strategy, the overhead of request processing is
reduced by 10.23%. With setting the index limit (𝑘) to 5 in
addition to the pipeline, the overhead is reduced by 34.4%
compared to the one without any optimization. With these

optimizations, the selection procedure occupies less than
25% CPU of the entire SSD operation procedure.

Impact of index shrinking. Figure 16 depicts the influ-
ence of varying the index limit (denoted as 𝑘) on effective
bandwidth, utilizing the Alibaba-iFashion dataset. As dis-
cussed in §6.1, we strategically reduce the index of an em-
bedding, limiting it to only 𝑘 entries. This reduction serves
to alleviate memory overhead and replication selection over-
head. Although the index is shrunk, the impact on effective
bandwidth remains remarkably marginal. By constraining
storing 10 indexes for each key,MaxEmbed achieves an ef-
fective bandwidth exceeding 98% of storing and retrieving
all indexes in an 80% replication ratio. By constraining stor-
ing just 5 indexes for each key, MaxEmbed still achieves
an effective bandwidth exceeding 96% of the one without
optimization in an 80% replication ratio.

8.5 Sensitivity analysis
Impact of embedding vector dimensions. The dimension
of the embedding vector determines how many embeddings
can be placed on a single SSD page, and different numbers of
embeddings on an SSD page will significantly affect the possi-
ble combination of embeddings and the effective bandwidth.
Figure 17 (a) exploresMaxEmbed’s sensitivity of embedding
sizes with the Alibaba-iFashion dataset. In all embedding vec-
tor sizes, the effective bandwidth increases as the replication
ratio increases. The larger the size of the embedding vector,
the worse the SHP effect without replication. This is because
when the embedding vector size increases, there are fewer
embedding vectors a single SSD page can accommodate and
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fewer combinations a single embedding can produce with
other embeddings. And the relative effect will be better after
making replication.
Sensitivity to SSD types. Figure 17 (b) illustrates the

influence of SSD types on MaxEmbed using the Alibaba-
iFashion dataset. The effective bandwidth improvement demon-
strates consistent results across Intel Optane P5800X SSD,
Intel P4510 SSD, and RAID 0 consisting of 2 P5800X SSDs.
The major difference in the results owes to the total band-
width of these SSDs. Therefore, the type of SSDs has minimal
impact onMaxEmbed.

9 Related Work
Minimize request size with hypergraph partition. Ban-
dana [11] suggests using past access patterns of the embed-
ding vectors to aggregate adjacent embedding vectors with
a hypergraph partition algorithm. Bandana uses SHP [20]
to identify and cluster frequently co-appearing embedding
vectors. However, the partition algorithm restricts each em-
bedding to only appearing in one cluster, causing limited
effective bandwidth improvement.
Based on SHP, we add a replication strategy to the hy-

pergraph partition algorithm to effectively create more em-
bedding combinations to further increase the possibility of
embedding co-appearance in an SSD page. Correspondingly,
we also designed an online service module for embedding
query serving with replication.
Reduce reduction overhead via sub-query memoiza-
tion. Merci [23] introduces a mechanism for memoizing
correlated embeddings to mitigate the overhead associated
with reduction operations and memory access bottlenecks.
Merci also uses hypergraph partition tools to aggregate re-
lated embeddings and uses additional memory space to store
the results of embedding reduction to alleviate the memory
bandwidth-bound problem. GRACE [43] also leverages addi-
tional memory to store embedding reduction results. GRACE
proposes a sys-aware clustering algorithm to find embedding
item co-occurrences to get a better clustering result.

Different from the SSD used by MaxEmbed, memory has
no reading and writing amplification problem. The mecha-
nism of Merci and GRACE is designed to reduce the expenses
of aggregation operations for embeddings.
Customized SSD for recommendation system embed-
ding storage. RecSSD [41] proposes a near-data processing
solution for neural recommendation inference. RecSSD re-
duces the total traffic on PCI-e and fully utilizes the SSD in-
ternal bandwidth by offloading computations for key embed-
ding table operations to SSD hardware. FlashEmbedding [38]
proposes a hardware/software co-design embedding storage
system, which incorporates an embedding sematic-aware
SSD. By using a light weight I/O stack and supporting fine-
grained access, FlashEmbedding effectively reduces read am-
plification.

These studies require modification of the SSD internal
mechanism, while MaxEmbed is designed to reduce read
amplification brought by read granularity mismatch and is
suitable for general SSDs.

10 Conclusion
In this paper, we propose MaxEmbed, a replicated hyper-
graph partition-based SSD embedding storage and retrieval
system. Using SSD to store small-sized embedding parame-
ters will encounter severe read amplification problems. Ex-
isting systems use hypergraph partition to find potential
combination relationships between embeddings to allevi-
ate the problem but ignore the shortcomings of hypergraph
partitioning in this problem. MaxEmbed uses replication
to construct more possible combinations between embed-
dings to co-locate more embeddings together to improve the
bandwidth of SSD embedding. Meanwhile, for the request
preprocessing problem caused by the replication, MaxEm-
bed adopts a heuristic selection strategy, effectively avoiding
software overhead. The evaluation shows thatMaxEmbed
boosts the SSD effective bandwidth up to 1.19×.
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A Artifact Appendix
A.1 Abstract
This appendix describes the workflow of MaxEmbed, includ-
ing code, evaluation scripts, and datasets used for evalua-
tions. The source code of MaxEmbed is available at: https:
//github.com/Ksitta/MaxEmbed.

A.2 Description

A.2.1 How to access

• Download source code from https://github.com/Ksitta/

MaxEmbed.

A.2.2 Hardware dependencies

• Intel CPU (for Intel TBB)
• NVMe SSD (for SPDK)
• x86-64 Architechture

A.2.3 Software dependencies

• System: Ubuntu 22.04.4 LTS
• CMake
• SPDK

https://github.com/Ksitta/MaxEmbed
https://github.com/Ksitta/MaxEmbed
https://github.com/Ksitta/MaxEmbed
https://github.com/Ksitta/MaxEmbed
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• vcpkg: We use vcpkg to install the following depen-
dencies, vcpkg can be downloaded from https://github.

com/microsoft/vcpkg

– CacheLib
– Folly
– TBB
– atomic-queue
– argparse

A.2.4 Data sets

• Amazon M2 [33]
• Criteo [17]
• Avazu [36]
• Alibaba-iFashion [8]
• CriteoTB [22]

A.3 Installation
Firstly, install CMake, SPDK, and vcpkg. Follow these steps:

• Run cmake –preset=default in the source directory of
MaxEmbed.

• Run make in the generated build folder.

A.4 Server
We provide a server with processed datasets and partitioned
results for AE reviewers. We will provide the method of
connecting to the server through HotCRP later.

A.5 Evaluation workflow

A.5.1 Major Claims. The paper presents the following
major claims in the evaluation section:

1. Effective Bandwidth Improvement:MaxEmbed enhances
the effective bandwidth for reading embeddings from
SSDs.

2. End-to-End Throughput Improvement: MaxEmbed in-
creases the end-to-end throughput for embedding serv-
ing.

3. End-to-End Latency Reduction: MaxEmbed signifi-
cantly reduces the end-to-end latency for embedding
serving.

A.5.2 Experiments. The scripts under ae_scripts folder
are provided to reproduce the results for Figure 8,9, 10, 11,
13 and 14. Run run_all.sh <log_path> script, all figures will
be generated at <log_path>/figures. If no parameters are
specified, the script help will be displayed.
We also provide log files that can be used to draw fig-

ures directly, please follow the script instructions and use it
directly.

To run several of the experiments, use run_all.sh <log_path>
x, where x is a number from 1 to 4, corresponding to the fol-
lowing four experiments:

• Experiment 1 (about 2.5 hours):
Run Command bash run_all.sh <log_path> 1

MaxEmbed under different cache ratio. RunMaxEm-
bed online procedure under different cache ratios and
replication ratios to check the effectiveness of replicas.
Figure 8, 10, 11 will be generated at <log_path>/figures.

• Experiment 2 (about 0.75 hours):
Run Command bash run_all.sh <log_path> 2

MaxEmbed with no DRAM cache. Run MaxEmbed
online procedure to check the throughput improve-
ment under different replication ratios with no DRAM
cache to show the effectiveness of MaxEmbed when
applying to a cacheless embedding serving scenario.
Then, Figure 13will be generated at <log_path>/figures.

• Experiment 3 (about 0.2 hours):
Run Command bash run_all.sh <log_path> 3

MaxEmbed with different replication algorithm. Run
MaxEmbed online procedure to check the difference
between the selected replication method and the other
two methods.
Figure 14 will be generated at <log_path>/figures.

• Experiment 4 (about 0.1 hours):
Run Command bash run_all.sh <log_path> 4

Explore the valid embedding count in a read. RunMax-
Embed online procedure to compare two different em-
bedding placements (no replication vs. 10% replication)
and explore how many valid embeddings can be ob-
tained from a single read operation.
Figure 9 will be generated at <log_path>/figures.
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